Subject
Customer
Location
Job No.
Engr.
Rev.
Date
Page

Wind Load Report

1. Site & Building Data

Roof Type: Gable  
Wind Speed (ult): 115 mph
Exposure Category: C  
Enclosure Class: Enclosed  
Building Width (W): 80 ft.
Building Length (L): 120 ft.
Eave Height (he): 16 ft.
Foundation Height (hf): 0 ft.
Roof Pitch: 4 /12
Eave Overhang (OHe): 2 ft.
Gable Overhang (OHg): 2 ft.

2. Parameters & Coefficients

Topographic Factor (Kzt): 1.0
Directionality Factor (Kd): .85
Roof Angle (θ): 18.43 deg.
Mean Roof Height (h): 22.67 ft.
Ridge Height (hr): 29.33 ft.
Pos. Internal Pressure (+GCpi): +0.18  
Neg. Internal Pressure (-GCpi): -0.18  
Velocity Pressure Exp. Coeff. (Kh): 0.93 @ z=h
Velocity Pressure (qh): 26.65 psf
End Zone Width (a): 3.00 ft.
Zone 2/2E Dist.: 40.00 ft.

3. Design Assumptions and Notes

Code Standard: ASCE 7-10
Geometry: Regular-Shaped Bldg.
Height Class: Low-Rise Building
Notes:

4. Design Loads

Top Chord Dead Load: 7 psf
Bottom Chord Dead Load: 10 psf
Truss/Rafter Spacing: 48 in. o/c

4. Design Wind Pressures: MWFRS Envelope Procedure


Load Case A: Transverse Direction
Surface GCpf Design Pressure (psf)
(w/ +GCpi) (w/ -GCpi)
1 0.52 8.97 18.56
2 -0.69 -23.18 -13.59
3 -0.47 -17.28 -7.69
4 -0.42 -15.87 -6.27
1E 0.78 15.99 25.59
2E -1.07 -33.31 -23.72
3E -0.67 -22.74 -13.15
4E -0.62 -21.27 -11.67
2OH -0.69 -18.39
2EOH -1.07 -28.51
3OH -0.47 -12.48
3EOH -0.67 -17.94
2OH+W -0.69/-0.7 -35.72
2EOH+W -1.07/-0.7 -45.85
a) (+) and (-) signs signify wind pressures acting toward & away from surfaces.
b) External Pressure Coefficients linearly interpolated from Fig. 28.4-1 ASCE 7-10.
c) Design building for all wind directions, 4 load patterns per load case.
d) Total horizontal shear shall not be less than that by neglecting roof wind forces.
e) Min. wind load for enclosed or partially enclosed bldg.: 16 psf wall, 8 psf roof.
f) Design pressures are for strength design, multiply by 0.6 for ASD.
Wind Loads 2025D21
Engineer Name ENGINEERING COMPANY INC.
Street Address City, CA 99999
ph. (800) 000-0000    www.website.com
-
1/15/2025 1
Subject
Customer
Location
Job No.
Engr.
Rev.
Date
Page

Load Case B: Longitudinal Direction
Surface GCpf Design Pressure (psf)
(w/ +GCpi) (w/ -GCpi)
1 -0.45 -16.79 -7.19
2 -0.69 -23.18 -13.59
3 -0.37 -14.66 -5.06
4 -0.45 -16.79 -7.19
5 0.40 5.86 15.46
6 -0.29 -12.52 -2.93
1E -0.48 -17.59 -7.99
2E -1.07 -33.31 -23.72
3E -0.53 -18.92 -9.33
4E -0.48 -17.59 -7.99
5E 0.61 11.46 21.05
6E -0.43 -16.25 -6.66
2OH -0.69 -18.39
2EOH -1.07 -28.51
3OH -0.37 -9.86
3EOH -0.53 -14.12
2EOH+W -1.07/-0.7 -47.17
3EOH+W -0.53/-0.7 -32.78
a) (+) and (-) signs signify wind pressures acting toward & away from surfaces.
b) External Pressure Coefficients linearly interpolated from Fig. 28.4-1 ASCE 7-10.
c) Design building for all wind directions, 4 load patterns per load case.
d) Total horizontal shear shall not be less than that by neglecting roof wind forces.
e) Min. wind load for enclosed or partially enclosed bldg.: 16 psf wall, 8 psf roof.
f) Design pressures are for strength design, multiply by 0.6 for ASD.


Torsional Load Cases
Surface Load Case GCpf Design Pressure (psf)
(w/ +GCpi) (w/ -GCpi)
1T A - 2.24 4.64
2T A - -5.80 -3.40
3T A - -4.32 -1.92
4T A - -3.97 -1.57
5T B - 1.47 3.86
6T B - -3.13 -0.73
a) (+) and (-) signs signify wind pressures acting toward & away from surfaces.
b) Pressures designated with a "T" are 25% of full design wind pressures.
c) Torsional loading shall apply to all 8 load patterns using the figures shown.
d) Design pressures are for strength design, multiply by 0.6 for ASD.
e) Torsional Design Exceptions: One story bldg. with h ≤ 30 ft,
   Two stories or less framed with light frame construction,
   Two stories or less with flexible diaphragms.
Wind Loads 2025D21
Engineer Name ENGINEERING COMPANY INC.
Street Address City, CA 99999
ph. (800) 000-0000    www.website.com
-
1/15/2025 2
Subject
Customer
Location
Job No.
Engr.
Rev.
Date
Page

5. Wind Load Calculations


1.) Lateral Loads - Transverse Direction:


Lateral Loads on Roof Diaphragm with Positive Internal Pressure
120 ft.
6.00 ft.
114.00 ft.
102.1 plf
76.2 plf
76.8 plf
43.0 plf
3688 lbs
3651 lbs
181.9 plf
138.2 plf
266.5 plf
185.5 plf
228.1 plf
147.1 plf
18.3 plf
14.3 plf
143.5 plf
99.9 plf
7.2 plf
5.0 plf
2 ft.
2 ft.
a) (-) signs signify wind lateral forces acting opposite to the direction of the arrows shown.
b) Strength design values multiplied by 0.6 to obtain ASD values.



Wind Base Shear (ASD)
Load Case A: Transverse Direction
Load Case Walls (lbs) Roof (lbs) Roof Overhangs (lbs) Total Lateral Load (lbs) R1 (lbs) R2 (lbs)
Positive Internal Pressure 14660 -5890 -1431 7340 3688 3651
Negative Internal Pressure 14660 -5890 -1431 7340 3688 3651
Roof Pressure = 0 14660 0 0 14660 7500 7160
Min. Pressures (8 psf, 16 psf) 9216 7680 653 17549 8774 8774
a) Bottom half of wall neglected in tributary area calculations.
b) Strength design values multiplied by 0.6 to obtain ASD values.
Wind Loads 2025D21
Engineer Name ENGINEERING COMPANY INC.
Street Address City, CA 99999
ph. (800) 000-0000    www.website.com
-
1/15/2025 3
Subject
Customer
Location
Job No.
Engr.
Rev.
Date
Page

2.) Lateral Loads - Longitudinal Direction:


Lateral Loads on Roof Diaphragm with Positive Internal Pressure
80 ft.
3.00 ft.
77.00 ft.
78.0 plf
60.1 plf
55.0 plf
28.1 plf
24.9 lbs
408.2 lbs
2517.1 lbs
2941.8 lbs
6612 lbs
6475 lbs
a) (-) signs signify wind lateral forces acting opposite to the direction of the arrows shown.
b) Strength design values multiplied by 0.6 to obtain ASD values.
c) Where the length of building (L) exceeds 4X the mean roof height (h), wind drag forces should additionally be considered.



Wind Base Shear (ASD)
Load Case B: Longitudinal Direction
Load Case Walls (lbs) Gable Ends (lbs) Roof (lbs) Total Lateral Load (lbs) RA (lbs) RB (lbs)
Positive Internal Pressure 7195 5892 0 13087 6612 6475
Negative Internal Pressure 7195 5892 0 13087 6612 6475
Roof Pressure = 0 7195 5892 0 13087 6612 6475
Min. Pressures (8 psf, 16 psf) 6144 5120 0 11264 5632 5632
a) Bottom half of wall neglected in tributary area calculations.
b) Strength design values multiplied by 0.6 to obtain ASD values.
Wind Loads 2025D21
Engineer Name ENGINEERING COMPANY INC.
Street Address City, CA 99999
ph. (800) 000-0000    www.website.com
-
1/15/2025 4
Subject
Customer
Location
Job No.
Engr.
Rev.
Date
Page

3.) Roof Truss Reactions:


Roof Truss/Rafter Reactions: Transverse End Zone
1462 lbs
817 lbs
Max. Horz. ① = 483 lbs
Max. Uplift ① = 1462 lbs
a) Strength design values multiplied by 0.6 to obtain ASD values.
b) Windward loads may be positive or negative depending on pitch of roof.



Roof Truss/Rafter Reactions (ASD)
w/ Positive Internal Pressure
Load Case Horizontal Load (lbs) Gross Uplift (lbs) Net Uplift (lbs) U1 (lbs) U2 (lbs)
Transverse Int. Zone 226 4116 708 553 155
Transverse End Zone 383 5687 2279 1462 817
Longitudinal Int. Zone 287 3768 361 406 -45
Longitudinal End Zone 483 5219 1811 1286 525
a) Gross Uplift calculations do not include any counteracting roof dead loads.
b) Net Uplift calculations include counteracting roof dead loads multiplied by 0.6 per load case (7) ASCE 7-10.
c) Strength design values multiplied by 0.6 to obtain ASD values for wind loads.
d) Loads based on truss spacing calculated at 48" o/c.
e) Negative values for horizontal load indicate load acting in windward direction (tranverse load cases).
f) Negative values for uplift indicate net downward force (zero uplift).













*Disclaimer: The calculations produced herein are for initial design and estimating purposes only. The calculations and drawings presented do not constitute a fully engineered design. All of the potential load cases required to fully design an actual structure may not be provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2012 Sec. R802.10.2 and designed according to the minimum requirements of ASCE 7-10. The wind load calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.
Wind Loads 2025D21
Engineer Name ENGINEERING COMPANY INC.
Street Address City, CA 99999
ph. (800) 000-0000    www.website.com
-
1/15/2025 5