

Wind Load Report

1. Site & Building Data

Roof Type: Gable Wind Speed (ult): 120 mph **Exposure Category:** В **Enclosure Class:** Open Building Width (W): 28 ft. Building Length (L): 16 ft. 9 ft. Eave Height (he): Foundation Height (h_f): 0 ft. Roof Pitch: 4 /12 Eave Overhang (OHe): 1 ft. Gable Overhang (OH_g): 1 ft.

2. Parameters & Coefficients

Topographic Factor (K_{zt}): 1.0 .85 Directionality Factor (K_d): 18.43 deg. Roof Angle (θ): Mean Roof Height (h): 11.33 ft. Ridge Height (h_r): 13.67 ft. Pos. Internal Pressure (+GCpi): +0.00Neg. Internal Pressure (-GCpi): -0.00Velocity Pressure Exp. Coeff. (Kh): 0.70 @ z=h

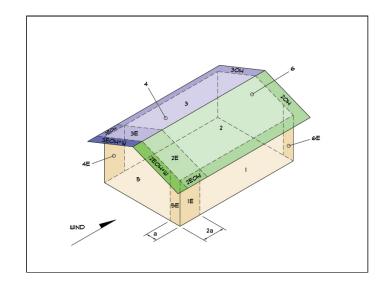
Velocity Pressure (qh): 21.95 psf 3.00 ft. End Zone Width (a): Zone 2/2E Dist.: 14.00 ft.

3. Design Assumptions and Notes

Code Standard: **ASCE 7-10** Geometry: Regular-Shaped Bldg. Height Class: Low-Rise Building

Notes:

4. Design Loads

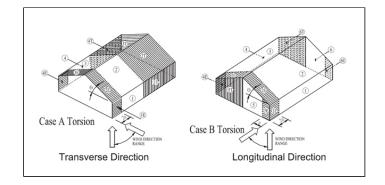

Top Chord Dead Load: 7 psf Bottom Chord Dead Load: 7 psf Truss/Rafter Spacing: 24 in. o/c

4. Design Wind Pressures: MWFRS Envelope Procedure

Load C	Load Case A: Transverse Direction					
Surface	GCpf	Design Pressure (psf) (w/+GCpi) (w/-GCpi)				
1	0.52	11.34				
2	-0.69	-15.15				
3	-0.47	-10.29				
4	-0.42	-9.12				
1E	0.78	17.13				
2E	-1.07	-23.49				
3E	-0.67	-14.78				
4E	-0.62	-13.57				
2OH	-0.69	-15.15				
2EOH	-1.07	-23.49				
3ОН	-0.47	-10.29				
3EOH	-0.67	-14.78				
2OH+W	-0.69/-0.7	-30.51				
2EOH+W	-1.07/-0.7	-38.86				

- a) (+) and (-) signs signify wind pressures acting toward & away from surfaces. b) External Pressure Coefficients linearly interpolated from Fig. 28.4-1 ASCE 7-10. c) Design building for all wind directions, 4 load patterns per load case.
- d) Total horizontal shear shall not be less than that by neglecting roof wind forces.
- e) Min. wind load for enclosed or partially enclosed bldg.: 16 psf wall, 8 psf roof. f) Design pressures are for strength design, multiply by 0.6 for ASD.
- Subject Customer Location Wind Loads 2025D106 This report may not be copied, reproduced or distributed without the written consent of **Engineer Name** ENGINEERING COMPANY INC. Date Street Address City, CA 99999 Page 4/26/2025 ph. (800) 000-0000 www.website.com Copyright © 2025

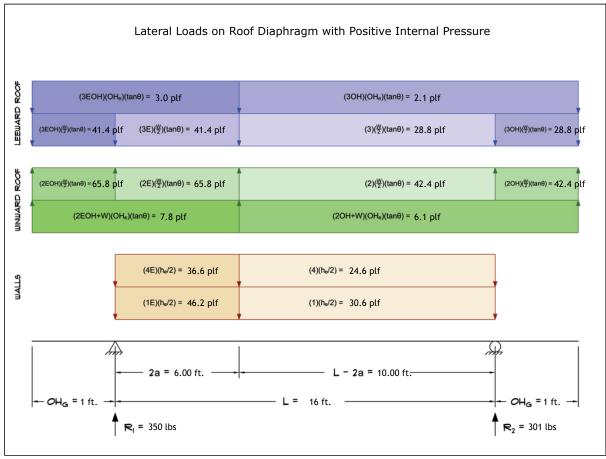
Load Case B: Longitudinal Direction					
Surface	CC-f	Design Pressure (psf)			
Surface	GCpf	(w/ +GCpi)	(w/ -GCpi)		
1	-0.45	-9.	.88		
2	-0.69	-15	.15		
3	-0.37	-8.	.12		
4	-0.45	-9.	.88		
5	0.40	8.	78		
6	-0.29	-6.	.37		
1E	-0.48	-10.54			
2E	-1.07	-23	.49		
3E	-0.53	-11	.63		
4E	-0.48	-10	.54		
5E	0.61	13.	.39		
6E	-0.43	-9.	.44		
2OH	-0.69	-15	.15		
2EOH	-1.07	-23	.49		
3ОН	-0.37	-8.	.12		
3ЕОН	-0.53	-11.63			
2EOH+W	-1.07/-0.7	-38	.86		
3EOH+W	-0.53/-0.7	-27	.00		



- a) (+) and (-) signs signify wind pressures acting toward & away from surfaces.
 b) External Pressure Coefficients linearly interpolated from Fig. 28.4-1 ASCE 7-10.
 c) Design building for all wind directions, 4 load patterns per load case.
 d) Total horizontal shear shall not be less than that by neglecting roof wind forces.
 e) Min. wind load for enclosed or partially enclosed bldg.: 16 psf wall, 8 psf roof.
 f) Design pressures are for strength design, multiply by 0.6 for ASD.

Torsional Load Cases						
Surface	Load Case	GCpf	Design Pressure (psf)			
Surface	Load Case	ССРІ	(w/+GCpi) (w/-GCpi)			
1T	A	-	2.83			
2T	A	-	-3.79			
3T	A	-	-2.57			
4T	A	-	-2.28			
5T	В	-	2.20			
6T	В	-	-1.59			

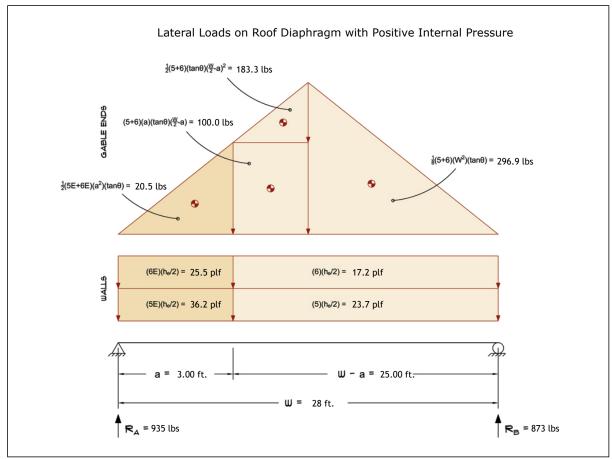
- a) (+) and (-) signs signify wind pressures acting toward & away from surfaces. b) Pressures designated with a "T" are 25% of full design wind pressures. c) Torsional loading shall apply to all 8 load patterns using the figures shown. d) Design pressures are for strength design, multiply by 0.6 for ASD. e) Torsional Design Exceptions. One story bldg. with $h \leq 30 \, \text{ft},$


Two stories or less framed with light frame construction, Two stories or less with flexible diaphragms.

Subject Wind Loads	Customer	Location			Job No. 2025D106
Engineer Name	ENGINEERING CO		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.	Rev.
Date 4/26/2025	Street Address City, CA 9999 ph. (800) 000-0000 www.w	99 /ebsite.com	COMPANY LOGO	Copyright © 2025	Page 2

5. Wind Load Calculations

1.) <u>Lateral Loads - Transverse Direction</u>:

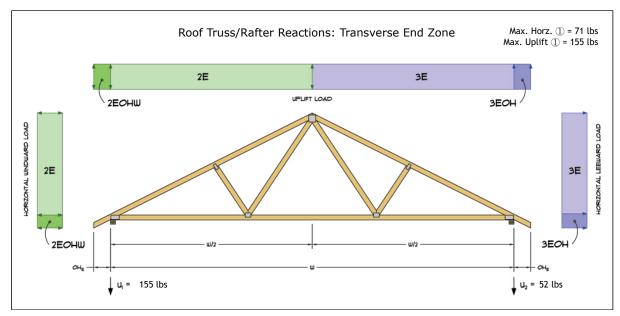

- a) (-) signs signify wind lateral forces acting opposite to the direction of the arrows shown.
- b) Strength design values multiplied by 0.6 to obtain ASD values.

	Wind Base Shear (ASD)							
	Load Case A: Transverse Direction							
Load Case	Load Case Walls (lbs) Roof (lbs) Roof Overhangs (lbs) Total Lateral Load (lbs) R1 (lbs) R2 (lbs)							
Positive Internal Pressure	1050	-282	-116	651	350	301		
Negative Internal Pressure	Negative Internal Pressure 1050 -282 -116 651 350 301							
Roof Pressure = 0 1050 0 0 1050 577 473								
Min. Pressures (8 psf, 16 psf)	691	358	74	1123	562	562		

- a) Bottom half of wall neglected in tributary area calculations.
- b) Strength design values multiplied by 0.6 to obtain ASD values.

Subject Wind Loads	Customer	Location			Job No. 2025D106
Engineer Name	ENGINEERING CO	OMPANY INC.	STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of	Rev
Date 4/26/2025	Street Address City, CA 999 ph. (800) 000-0000 www.v	99 vebsite.com	COMPANY LOGO	Engineering Company Inc. Copyright © 2025	Page 3

2.) <u>Lateral Loads - Longitudinal Direction</u>:


- a) (-) signs signify wind lateral forces acting opposite to the direction of the arrows shown.
 b) Strength design values multiplied by 0.6 to obtain ASD values.
 c) Where the length of building (L) exceeds 4X the mean roof height (h), wind drag forces should additionally be considered.

	Wind Base Shear (ASD)							
	Load Case B: Longitudinal Direction							
Load Case	Load Case Walls (lbs) Gable Ends (lbs) Roof (lbs) Total Lateral Load (lbs) RA (lbs) RB (lbs)							
Positive Internal Pressure	1207	601	0	1808	935	873		
Negative Internal Pressure	Negative Internal Pressure 1207 601 0 1808 935 873							
Roof Pressure = 0	Roof Pressure = 0 1207 601 0 1808 935 873							
Min. Pressures (8 psf, 16 psf)	1210	627	0	1837	918	918		

- a) Bottom half of wall neglected in tributary area calculations.
 b) Strength design values multiplied by 0.6 to obtain ASD values.

Subject Wind Loads	Customer	Location			Job No. 2025D106
Engineer Name	ENGINEERING CO		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.	Rev.
Date 4/26/2025	Street Address City, CA 9999 ph. (800) 000-0000 www.w	99 /ebsite.com	COMPANY LOGO	Copyright © 2025	Page 4

3.) Roof Truss Reactions:

- a) Strength design values multiplied by 0.6 to obtain ASD values.
- b) Windward loads may be positive or negative depending on pitch of roof.

Roof Truss/Rafter Reactions (ASD)							
w/ Positive Internal Pressure							
Load Case Horizontal Load (lbs) Gross Uplift (lbs) Net Uplift (lbs) U1 (lbs) U2 (lbs)							
Transverse Int. Zone	35	476	-25	21	-45		
Transverse End Zone	58	707	206	155	52		
Longitudinal Int. Zone	42	419	-82	-7	-75		
Longitudinal End Zone	71	632	131	123	9		

- a) Gross Uplift calculations do not include any counteracting roof dead loads.
- b) Net Uplift calculations include counteracting roof dead loads multiplied by 0.6 per load case (7) ASCE 7-10. c) Strength design values multiplied by 0.6 to obtain ASD values for wind loads. d) Loads based on truss spacing calculated at 24" o/c.

- e) Negative values for horizontal load indicate load acting in windward direction (tranverse load cases).
- f) Negative values for uplift indicate net downward force (zero uplift).

*Disclaimer: The calculations produced herein are for initial design and estimating purposes only. The calculations and drawings presented do not constitute a fully engineered design. All of the potential load cases required to fully design an actual structure may not be provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2012 Sec. R802.10.2 and designed according to the minimum requirements of ASCE 7-10. The wind load calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.

Subject	Customer	Location			Job No.
Wind Loads					2025D106
Engineer Name	ENGINEERING CO		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.	Rev.
4/26/2025	Street Address City, CA 9999 ph. (800) 000-0000 www.w	99 vebsite.com	COMPANY LOGO	Copyright © 2025	Page 5