Wind Load Report

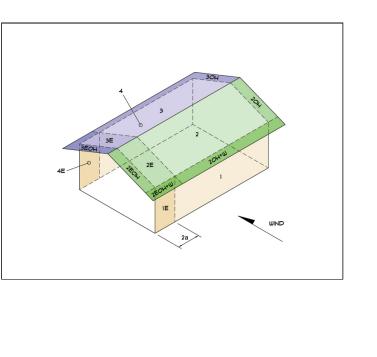
1. Site & Building Data

Roof Type:	Gable
Wind Speed (ult):	121 mph
Exposure Category:	С
Enclosure Class:	Enclosed
Building Width (W):	67 ft.
Building Length (L):	67 ft.
Eave Height (he):	37 ft.
Foundation Height (hf):	0 ft.
Roof Pitch:	8 /12
Eave Overhang (OHe):	0.1 ft.
Gable Overhang (OHg):	.1 ft.

2. Parameters & Coefficients

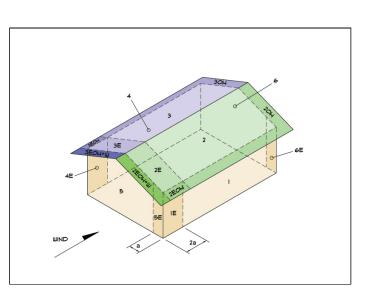
Topographic Factor (K _{zt}):	1.0
Directionality Factor (Kd):	.85
Roof Angle (θ):	33.69 deg.
Mean Roof Height (h):	48.17 ft.
Ridge Height (h _r):	59.33 ft.
Pos. Internal Pressure (+GCpi):	+0.18
Neg. Internal Pressure (-GCpi):	-0.18
Velocity Pressure Exp. Coeff. (Kh):	1.09 @ z=h
Velocity Pressure (qh):	34.57 psf
End Zone Width (a):	3.00 ft.
Zone 2/2E Dist.:	33.50 ft.

3. Design Assumptions and Notes 4. Design Loads

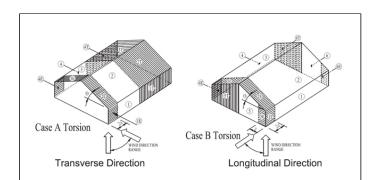

Code Standard:	ASCE 7-10
Geometry:	Regular-Shaped Bldg.
Height Class:	Low-Rise Building
Notes:	

Top Chord Dead Load:	7 psf
Bottom Chord Dead Load:	10 psf
Truss/Rafter Spacing:	24 in. o/c

4. Design Wind Pressures: MWFRS Envelope Procedure


Load Case A: Transverse Direction					
Surface	CCaf	Design Pre	essure (psf)		
Surface	GCpf	(w/+GCpi)	(w/ -GCpi)		
1	0.56	13.14	25.58		
2	0.21	1.04	13.48		
3	-0.43	-21.09	-8.64		
4	-0.37	-19.02	-6.57		
1E	0.69	17.63	30.08		
2E	0.27	3.11	15.56		
3E	-0.53	-24.55	-12.10		
4E	-0.48	-22.82	-10.37		
2OH	0.21	7.	26		
2EOH	0.27	9.	33		
3OH	-0.43	-14	-14.87		
3EOH	-0.53	-18.32			
20H+W	0.21/-0.7	-15.63			
2EOH+W	0.27/-0.7	-13	.56		

a) (+) and (-) signs signify wind pressures acting toward & away from surfaces. b) External Pressure Coefficients linearly interpolated from Fig. 28.4-1 ASCE 7-10. c) Design building for all wind directions, 4 load patterns per load case. d) Total horizontal shear shall not be less than that by neglecting roof wind forces. e) Min. wind load for enclosed or partially enclosed bldg.: 16 psf wall, 8 psf roof. f) Design pressures are for strength design, multiply by 0.6 for ASD.



Load Ca	se B: Lon	gitudinal I	
Surface	GCpf	Design Pre	ssure (psf)
Surface	GCpi	(w/ +GCpi)	(w/ -GCpi)
1	-0.45	-21.78	-9.33
2	-0.69	-30.08	-17.63
3	-0.37	-19.02	-6.57
4	-0.45	-21.78	-9.33
5	0.40	7.61	20.05
6	-0.29	-16.25	-3.80
1E	-0.48	-22.82	-10.37
2E	-1.07	-43.22	-30.77
3E	-0.53	-24.55	-12.10
4E	-0.48	-22.82	-10.37
5E	0.61	14.87	27.31
6E	-0.43	-21.09	-8.64
2OH	-0.69	-23	.86
2EOH	-1.07	-36	.99
3OH	-0.37	-12	.79
3EOH	-0.53	-18	.32
2EOH+W	-1.07/-0.7	-61	.19
3EOH+W	-0.53/-0.7	-42	.53

a) (+) and (-) signs signify wind pressures acting toward & away from surfaces.
b) External Pressure Coefficients linearly interpolated from Fig. 28.4-1 ASCE 7-10.
c) Design building for all wind directions, 4 load patterns per load case.
d) Total horizontal shear shall not be less than that by neglecting roof wind forces.
e) Min. wind load for enclosed or partially enclosed bldg.: 16 psf wall, 8 psf roof.
f) Design pressures are for strength design, multiply by 0.6 for ASD.

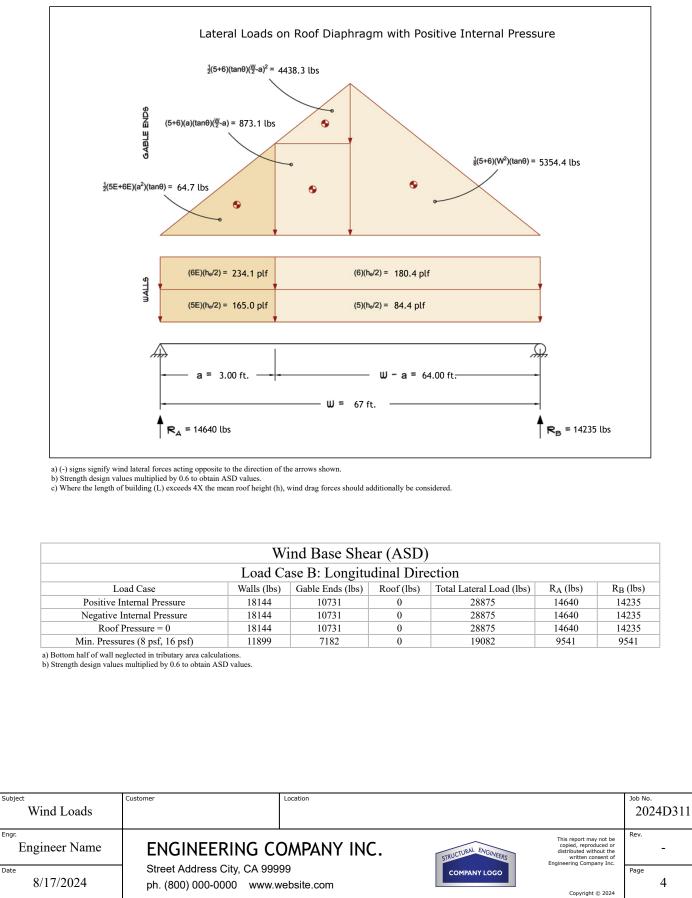
	Torsional Load Cases					
Surface	1.10	00.6	Design Pressure (psf)			
Surface	Load Case	GCpf	(w/+GCpi)	(w/ -GCpi)		
1T	A	-	3.28	6.40		
2T	A	-	0.26	3.37		
3T	A	-	-5.27	-2.16		
4T	A	-	-4.75	-1.64		
5T	В	-	1.90	5.01		
6T	В	-	-4.06	-0.95		

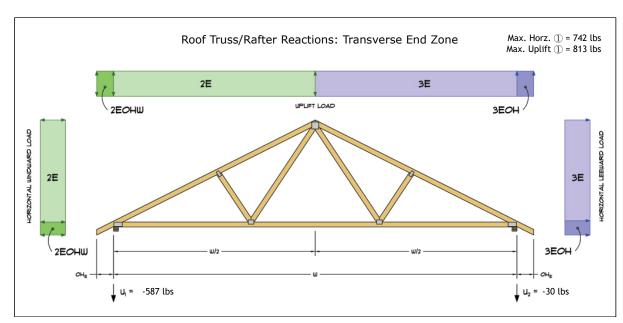
a) (+) and (-) signs signify wind pressures acting toward & away from surfaces.
b) Pressures designated with a "T" are 25% of full design wind pressures.
c) Torsional loading shall apply to all 8 load patterns using the figures shown.
d) Design pressures are for strength design, multiply by 0.6 for ASD.
e) Torsional Design Exceptions: One story bldg, with h ≤ 30 ft,

Two stories or less framed with light frame construction, Two stories or less with flexible diaphragms.

Subject Wind Loads	Customer	Location			Job No. 2024D311
Engineer Name	ENGINEERING CO		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.	Rev.
Date 8/17/2024	Street Address City, CA 999 ph. (800) 000-0000 www.w		Contract Edge		Page 2

5. Wind Load Calculations


1.) Lateral Loads - Transverse Direction:


2.) Lateral Loads - Longitudinal Direction:

Engr.

Date

3.) Roof Truss Reactions:

a) Strength design values multiplied by 0.6 to obtain ASD values.

b) Windward loads may be positive or negative depending on pitch of roof.

Roof Truss/Rafter Reactions (ASD)					
	w/ Positive Internal Pressure				
Load Case	Horizontal Load (lbs)	Gross Uplift (lbs)	Net Uplift (lbs)	U1 (lbs)	U ₂ (lbs)
Transverse Int. Zone	-593	810	-673	-559	-114
Transverse End Zone	-742	866	-617	-587	-30
Longitudinal Int. Zone	297	1978	496	360	136
Longitudinal End Zone	502	2731	1248	813	435

a) Gross Uplift calculations do not include any counteracting roof dead loads.

b) Net Uplift calculations include counteracting roof dead loads multiplied by 0.6 per load case (7) ASCE 7-10.
 c) Strength design values multiplied by 0.6 to obtain ASD values for wind loads.
 d) Loads based on truss spacing calculated at 24" o/c.

e) Negative values for horizontal load indicate load acting in windward direction (tranverse load cases).

f) Negative values for uplift indicate net downward force (zero uplift).

*Disclaimer: The calculations produced herein are for initial design and estimating purposes only. The calculations and drawings presented do not constitute a fully engineered design. All of the potential load cases required to fully design an actual structure may not be provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2012 Sec. R802.10.2 and designed according to the minimum requirements of ASCE 7-10. The wind load calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.

Subject	Customer	Location			Job No.
Wind Loads					2024D311
Engr.				This report may not be	Rev.
Engineer Name	ENGINEERING CO	OMPANY INC.	STRUCTURAL ENGINEERS	copied, reproduced or distributed without the written consent of	-
			STAD	Engineering Company Inc.	
Date	Street Address City, CA 999	99	COMPANY LOGO		Page
8/17/2024	ph. (800) 000-0000 www.w	vebsite.com			5
	p ()			Copyright © 2024	