Snow Load Report

1. Roof and Building Data

Ground Snow Load (Pg):	60.0 psf
Roof Pitch:	6 /12
Risk Category:	II
Eave-to-Ridge (W):	24 ft.
Terrain Category:	В
Exposure:	Partially Exposed
Thermal Factor (Ct):	1.00
Roof Surface:	Asphalt Shingles
Roof System:	Common Truss
Spacing:	24 in. o/c
Overhang:	12 in.

2. Design Loads

Top Chord Dead Load:7psfBottom Chord Dead Load:10psfSF (Slope Factor) = $1/Cosine(\Phi) = 1.12$ (Dead loads specified on a projected horizontal basis take into account the effect of the pitch via a slope factor.)Adj. TCDL (TCDL x SF):7.8psf

3. Design Assumptions

Code Standard:	ASCE 7-10		
Number of Plies:	1 PLY		
Bottom Chord Pitch:	0 /12		

4. Snow Load Calculations

Calculate flat roof snow load $p_{\rm f}$ using the following equation:

 $p_f = 0.7 C_e C_t I_s p_g$

where:

 $\begin{array}{l} p_{f} = Flat \ Roof \ Snow \ Load \ in \ psf \\ C_{e} = 1.00 = Exposure \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 7-2 \ (Terrain \ Cat. \ B, \ Exp. \ Partially \ Exposed) \\ C_{t} = 1.00 = Thermal \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 7-3 \\ I_{s} = 1.00 = Importance \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 1.5-2 \ (Risk \ Cat. \ II) \\ p_{g} = 60.0 \ psf = Ground \ Snow \ Load \ in \ psf \end{array}$

 $p_f = 0.7C_eC_tI_sp_g = 0.7(1.00)(1.00)(1.00)(60.0) = 42.0 \text{ psf}$

Subject Snow Loads	Customer Charles Hunter	Location 217 E	Division St		Job No. ERRA
					Liuui
Engr. Charles Hunter	HUNTER ENGINEERING & DESIGN				Rev. –
Date 2/20/2025	217E Division St. ph. 715-479-4889 www.website.com		HUNTER Engineering & Design Copyright © 2025		Page 1

A minimum roof snow load, pm shall apply to monoslope, hip and gable roofs with slopes less than 15 degrees using the following equations:

Where p_g is 20 psf or less: $p_m=I_sp_g$ Where p_g exceeds 20 psf: $p_m=I_s(20)$

Roof slope is greater than 15 degrees, the minimum roof snow load, pm, does not apply.

For locations where p_g is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall included a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

Roof slope in degrees (26.57°) is greater than W/50 = 0.5, the 5.0 psf rain-on-snow surcharge load does not apply.

Calculate sloped roof snow load ps using the following equation:

 $p_s = C_s p_f$

where:

 $p_s =$ Sloped Roof Snow Load in psf $C_s = 1.00 =$ Roof Slope Factor, as determined by ASCE 7-10 Sec. 7.4.1-7.4.4 and Figure 7-2 $p_f =$ Flat Roof Snow Load in psf

Roof surface (Asphalt Shingles) is considered a "non-slippery" roof. For a $C_t = 1.00$ the roof slope factor C_s is given by the solid line of ASCE 7-10 Figure 7-2a.

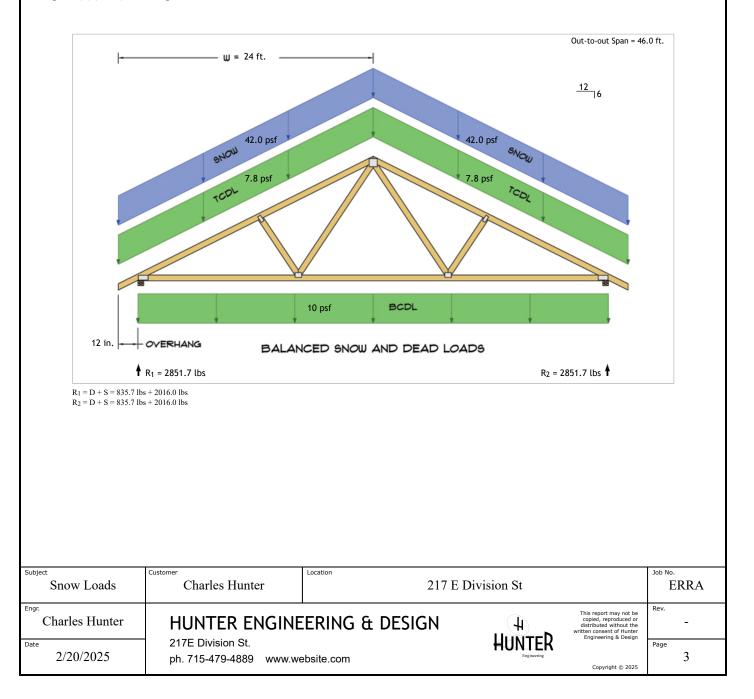
 $p_s = C_s p_f = (1.00)(42.0) = 42.0 \text{ psf}$

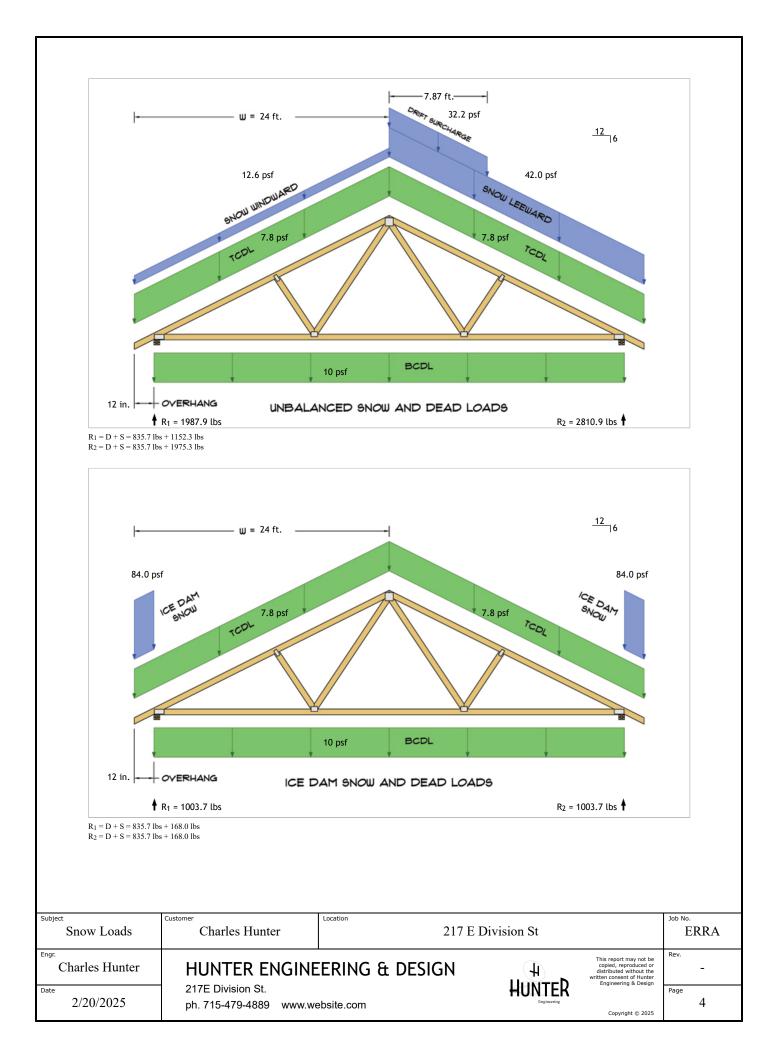
Calculate unbalanced snow load for hip and gable roofs as shown in ASCE 7-10 Figure 7-5. Unbalanced snow loads are required for roof pitches between 1/2 on 12 to 7 on 12. Using the following equations:

 $\gamma = 0.13 p_g + 14$ (snow density) $h_d = .43\sqrt[3]{l_u}\sqrt[4]{p_e+10} - 1.5$ (drift height) [if $l_u < 20$ ft., use $l_u = 20$ ft.] $l_d = \frac{8}{2} h_d \sqrt{S}$ (width of drift surcharge) $p_d = h_d \gamma / \sqrt{S}$ (drift surcharge snow load) where: Balanced γ = Snow density in pcf, not to exceed 30 pcf. Unbalanced $W \leq 20$ ft with h_d = Drift height in feet, as determined by eqn. or ASCE 7-10 Fig. 7-9. roof rafter system $l_u = W = Ridge$ to eave distance in feet, windward side of roof. S = 12/Roof Pitch l_d = Width of drift surcharge in feet. 0.3 p Unbalanced pd = Drift Surcharge Snow Load in psf Other **•** • Note: Unbalanced loads need not be considered for $\theta > 30.2^{\circ}$ (7 on 12) or for $\theta \le 2.38^{\circ}$ (1/2 on 12).

FIGURE 7-5 Balanced and Unbalanced Snow Loads for Hip and Gable Roofs.

 $h_d \gamma / \sqrt{S}$


p_s


Subject	Customer	Location			Job No.
Snow Loads	Charles Hunter 217 E Division St			ERRA	
Engr. Charles Hunter	er HUNTER ENGINEERING & DESIGN 217E Division St. ph. 715-479-4889 www.website.com			This report may not be copied, reproduced or distributed without the written consent of Hunter Engineering & Design Copyright © 2025	Rev. _
Date 2/20/2025					Page 2

$$\begin{aligned} p_{\text{windward}} &= 0.3 \text{p}_{\text{s}} = (0.3)(42.0) = 12.6 \text{ psf} \\ p_{\text{leeward}} &= \text{p}_{\text{s}} = 42.0 \text{ psf} \end{aligned}$$

$$\gamma &= 0.13(60.0) + 14 = 21.80 \text{ pcf} \\ h_d &= .43\sqrt[3]{24}\sqrt[4]{60.0 + 10} - 1.5 = 2.09 \text{ ft. [lu} = 24 \text{ ft.]} \\ l_d &= \frac{8}{3} \times 2.09 \times \sqrt{12/6} = 7.87 \text{ ft.} \end{aligned}$$

$$p_d &= \frac{2.09 \times 21.80}{\sqrt{12/6}} = 32.2 \text{ psf} \end{aligned}$$

On warm roofs apply a distributed $2p_f$ snow load on all overhanging portions as per ASCE 7-10 section 7.4.5. No other loads except dead loads shall be present on the roof when this uniformly distributed load is applied.

$$2p_f = (2)(42.0) = 84.0 \text{ psf}$$

