Snow Load Report

1. Roof and Building Data

Ground Snow Load (Pg): 65.2 psf Roof Pitch: 4.5 /12 Risk Category: II Eave-to-Ridge (W): 21 ft. Terrain Category: \mathbf{C} Exposure: Fully Exposed Thermal Factor (C_t): 1.20 Roof Surface: Metal Roof System: Common Truss

Spacing: 144 in. o/c Overhang: 12 in.

2. Design Loads

Top Chord Dead Load: 4.2 psf Bottom Chord Dead Load: 0.8 psf

SF ($Slope\ Factor$) = $1/Cosine(\Phi)$ = 1.07 (Dead loads specified on a projected horizontal basis take into account the effect of the pitch via a slope factor.)

Adj. TCDL (TCDL x SF): 4.5 psf

3. Design Assumptions

Code Standard: ASCE 7-10 Number of Plies: 1 PLY Bottom Chord Pitch: 0 /12

4. Snow Load Calculations

Calculate flat roof snow load pf using the following equation:

 $p_f = 0.7C_eC_tI_sp_g$

where:

 p_f = Flat Roof Snow Load in psf

C_e = 0.90 = Exposure Factor, as determined by ASCE 7-10 Table 7-2 (Terrain Cat. C, Exp. Fully Exposed)

 $C_t = 1.20$ = Thermal Factor, as determined by ASCE 7-10 Table 7-3

 $I_s = 1.00 = \text{Importance Factor}$, as determined by ASCE 7-10 Table 1.5-2 (Risk Cat. II)

 $p_g = 65.2 \text{ psf} = Ground Snow Load in psf}$

 $p_f = 0.7C_eC_tI_sp_g = 0.7(0.90)(1.20)(1.00)(65.2) = 49.3 \text{ psf}$

Snow Loads	Customer	Location			Job No. 2025A243
Engr. Name	STRUCTURAL EN		STRUCTURAL ENGINEERS COMPANY LOGO	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc. Copyright © 2025	Rev.
5/20/2025	Street Address City, ST 9999 ph. (800) 000-0000 www.w	99 vebsite.com			Page 1

A minimum roof snow load, pm shall apply to monoslope, hip and gable roofs with slopes less than 15 degrees using the following equations:

Where p_g is 20 psf or less: $p_m=I_sp_g$ Where p_g exceeds 20 psf: $p_m=I_s(20)$

Roof slope is greater than 15 degrees, the minimum roof snow load, pm, does not apply.

For locations where pg is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall included a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

Roof slope in degrees (20.56°) is greater than W/50 = 0.4, the 5.0 psf rain-on-snow surcharge load does not apply.

Calculate sloped roof snow load ps using the following equation:

 $p_s = C_s p_f$

where:

 p_s = Sloped Roof Snow Load in psf

 $C_s = 1-[(20.56-15)/55] = 0.90 = \text{Roof Slope Factor}$, as determined by ASCE 7-10 Sec. 7.4.1-7.4.4 and Figure 7-2 $p_f = \text{Flat Roof Snow Load in psf}$

Roof surface (Metal) is considered a "slippery" roof. For a $C_t = 1.20$ the roof slope factor C_s is given by the dashed line of ASCE 7-10 Figure 7-2c.

$$p_s = C_s p_f = (0.90)(49.3) = 44.3 \text{ psf}$$

Calculate unbalanced snow load for hip and gable roofs as shown in ASCE 7-10 Figure 7-5.

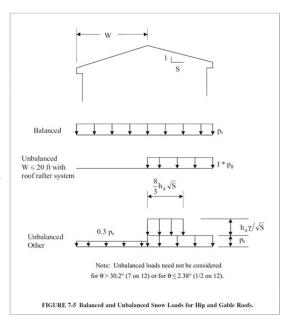
Unbalanced snow loads are required for roof pitches between 1/2 on 12 to 7 on 12.

Using the following equations:

 $\gamma = 0.13 p_g + 14$ (snow density) $h_d = .43 \sqrt[3]{l_u} \sqrt[4]{p_g + 10} - 1.5$ (drift height) [if $l_u < 20$ ft., use $l_u = 20$ ft.] $l_d = \frac{8}{3} h_d \sqrt{S}$ (width of drift surcharge) $p_d = h_d \gamma / \sqrt{S}$ (drift surcharge snow load)

where:

 γ = Snow density in pcf, not to exceed 30 pcf.

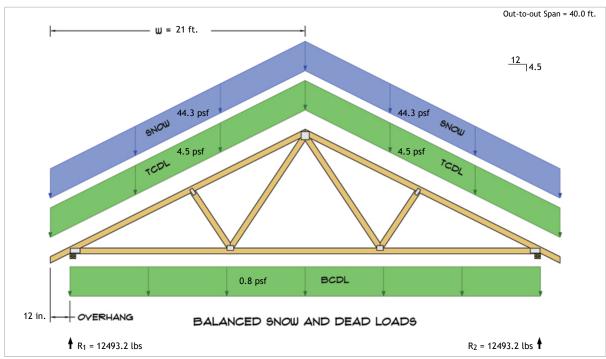

 h_d = Drift height in feet, as determined by eqn. or ASCE 7-10 Fig. 7-9.

 $l_u = W = Ridge$ to eave distance in feet, windward side of roof.

S = 12/Roof Pitch

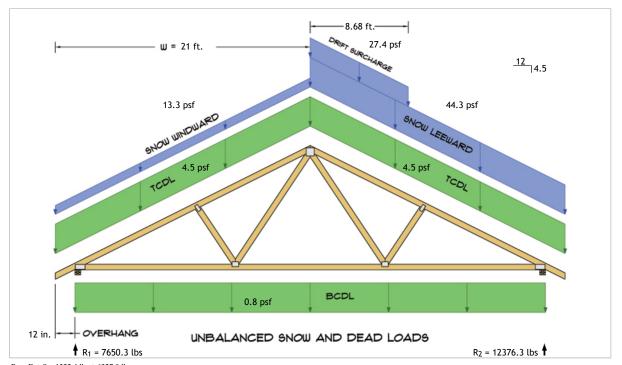
 l_d = Width of drift surcharge in feet.

pd = Drift Surcharge Snow Load in psf

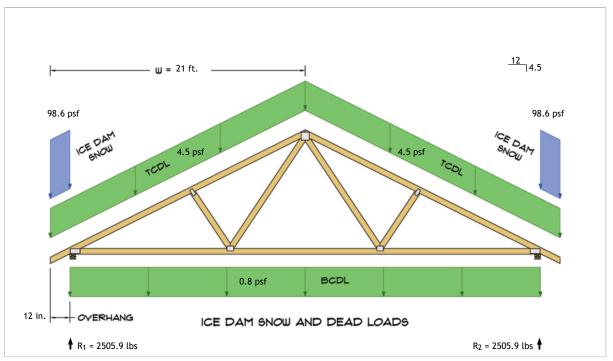

Subject	Snow Loads	Customer	Location			Job No. 2025A243
Engr. Name		CTRUCTURAL ENGINEERING INC		This report may not be copied, reproduced or distributed without the written consent of the cons		Rev.
	Eligi. Name		TRUCTURAL ENGINEERING INC.		distributed without the written consent of Engineering Company Inc.	-
Date	5/20/2025 Street Address City, ST 999 ph. (800) 000-0000 www.	99 vebsite.com	COMPANY LOGO	Copyright © 2025	Page 2	

$$\begin{aligned} & \text{pwindward} = 0.3 \text{ps} = (0.3)(44.3) = 13.3 \text{ psf} \\ & \text{pleeward} = \text{ps} = 44.3 \text{ psf} \\ & \gamma = 0.13(65.2) + 14 = 22.48 \text{ pcf} \\ & h_d = .43\sqrt[3]{21}\sqrt[4]{65.2 + 10} - 1.5 = 1.99 \text{ ft. [lu = 21 ft.]} \\ & l_d = \frac{8}{3} \times 1.99 \times \sqrt{12/4.5} = 8.68 \text{ ft.} \end{aligned}$$

$$p_d = \frac{1.99 \times 22.48}{\sqrt{12/4.5}} = 27.4 \text{ psf}$$


On warm roofs apply a distributed $2p_f$ snow load on all overhanging portions as per ASCE 7-10 section 7.4.5. No other loads except dead loads shall be present on the roof when this uniformly distributed load is applied.

$$2p_f = (2)(49.3) = 98.6 \text{ psf}$$



$$\begin{split} R_1 &= D + S = 1322.4 \text{ lbs} + 11170.8 \text{ lbs} \\ R_2 &= D + S = 1322.4 \text{ lbs} + 11170.8 \text{ lbs} \end{split}$$

Snow Loads	Customer	Location			Job No. 2025A243
Engr. Name	STRUCTURAL EN		STRUCTURAL ENGINEERS COMPANY LOGO	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc. Copyright © 2025	Rev.
5/20/2025	Street Address City, ST 9999 ph. (800) 000-0000 www.w	99 vebsite.com			Page 3

 $R_1 = D + S = 1322.4 \text{ lbs} + 6327.9 \text{ lbs}$ $R_2 = D + S = 1322.4 \text{ lbs} + 11054.0 \text{ lbs}$

$$\begin{split} R_1 &= D + S = 1322.4 \ lbs + 1183.5 \ lbs \\ R_2 &= D + S = 1322.4 \ lbs + 1183.5 \ lbs \end{split}$$

*Disclaimer: The calculations produced herein are for initial design and estimating purposes only. The calculations and drawings presented do not constitute a fully engineered design. All of the load cases required to fully design an actual structure are not provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2012 Sec. R802.10.2 and designed according to the minimum requirements of ASCE 7-10. The snow load calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.

Snow Loads	Customer	Location			Job No. 2025A243
Engr. Name	STRUCTURAL EN	IGINEERING INC.	STRUCTURAL ENGINEERS COMPANY LOGO	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc. Copyright © 2025	Rev.
5/20/2025	Street Address City, ST 9999 ph. (800) 000-0000 www.w	99 vebsite.com			Page 4