Snow Load Report

1. Roof and Building Data

Ground Snow Load (Pg):	30.0 psf	Exposure:	Partially Exposed
Roof Pitch:	12 /12	Thermal Factor (Ct):	1.00
Risk Category:	II	Roof Surface:	Asphalt Shingles
Eave-to-Ridge (W):	15 ft.	Roof System:	Attic Truss
Attic Width (A):	12 ft.	Spacing:	24 in. o/c
Terrain Category:	В	Overhang:	12 in.

2. Design Loads

Top Chord Dead Load:	7	psf
Bottom Chord Dead Load:	10	psf
Ceiling Dead Load:	5	psf
Floor Dead Load:	10	psf
Floor Live Load:	40	psf

ermal Factor (Ct):	1.00
of Surface:	Asphalt Shingles
of System:	Attic Truss
acing:	24 in.
erhang:	12 in.

SF (Slope Factor) = $1/Cosine(\Phi) = 1.41$ (Dead loads specified on a projected horizontal basis take into account the effect of the pitch via a slope factor.) Adj. TCDL (TCDL x SF): 9.9 psf

3. Design Assumptions

Code Standard:	ASCE 7-10
Number of Plies:	1 PLY
Bottom Chord Pitch:	0 /12

4. Snow Load Calculations

Calculate flat roof snow load p_f using the following equation:

 $p_f = 0.7C_eC_tI_sp_g$

where:

 $p_f = Flat Roof Snow Load in psf$ Ce = 1.00 = Exposure Factor, as determined by ASCE 7-10 Table 7-2 (Terrain Cat. B, Exp. Partially Exposed) $C_t = 1.00$ = Thermal Factor, as determined by ASCE 7-10 Table 7-3 $I_s = 1.00 =$ Importance Factor, as determined by ASCE 7-10 Table 1.5-2 (Risk Cat. II) $p_g = 30.0 \text{ psf} = \text{Ground Snow Load in psf}$

$p_f = 0.7C_eC_tI_sp_g = 0.7(1.00)(1.00)(1.00)(30.0) = 21.0 \text{ psf}$

Subject	Customer	Location			Job No.
Snow Loads					2025A118
Engr.				This report may not be copied, reproduced or	Rev.
Engr. Name	STRUCTURAL ENGINEERING INC.		STRUCTURAL ENGINEERS	distributed without the written consent of Engineering Company Inc.	-
Date 3/23/2025	Street Address City, ST 9999		COMPANY LOGO	,,, .	Page
	ph. (800) 000-0000 www.website.com			Copyright © 2025	l

A minimum roof snow load, pm shall apply to monoslope, hip and gable roofs with slopes less than 15 degrees using the following equations:

Where p_g is 20 psf or less: $p_m=I_sp_g$ Where p_g exceeds 20 psf: $p_m=I_s(20)$

Roof slope is greater than 15 degrees, the minimum roof snow load, pm, does not apply.

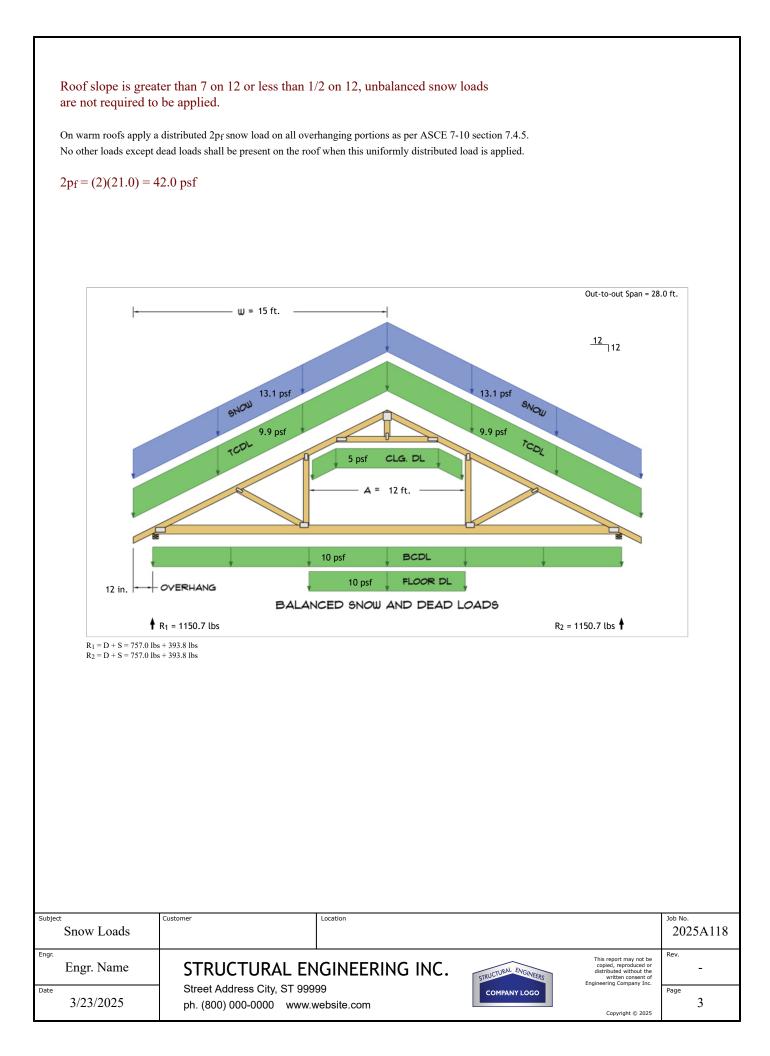
For locations where p_g is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall included a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

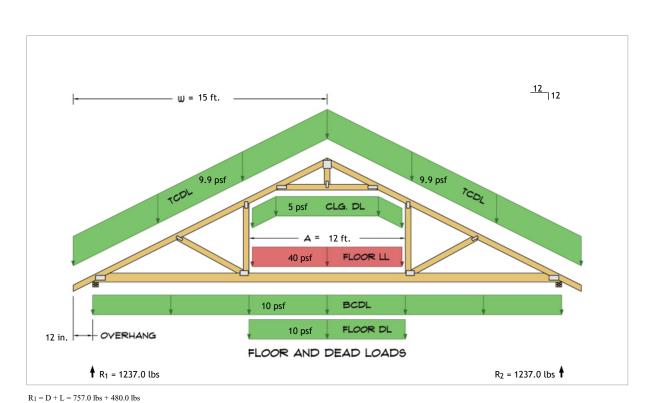
Roof slope in degrees (45.00°) is greater than W/50 = 0.3, the 5.0 psf rain-on-snow surcharge load does not apply.

Calculate sloped roof snow load ps using the following equation:

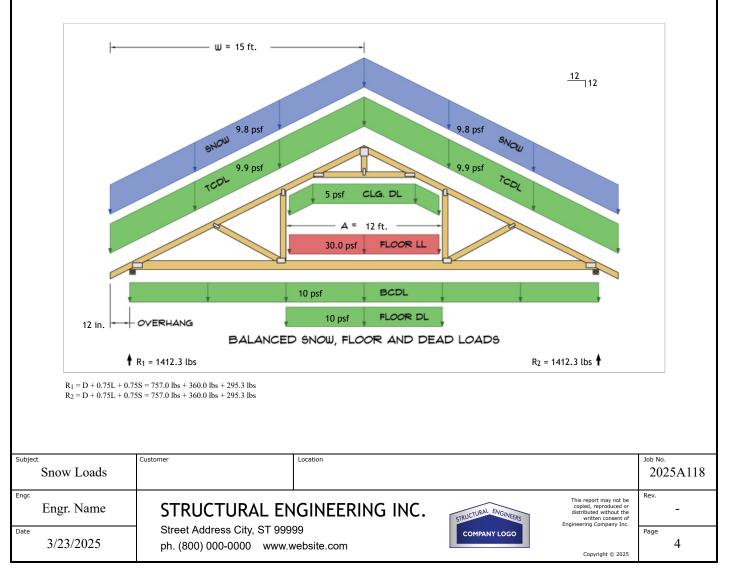
 $p_s = C_s p_f$

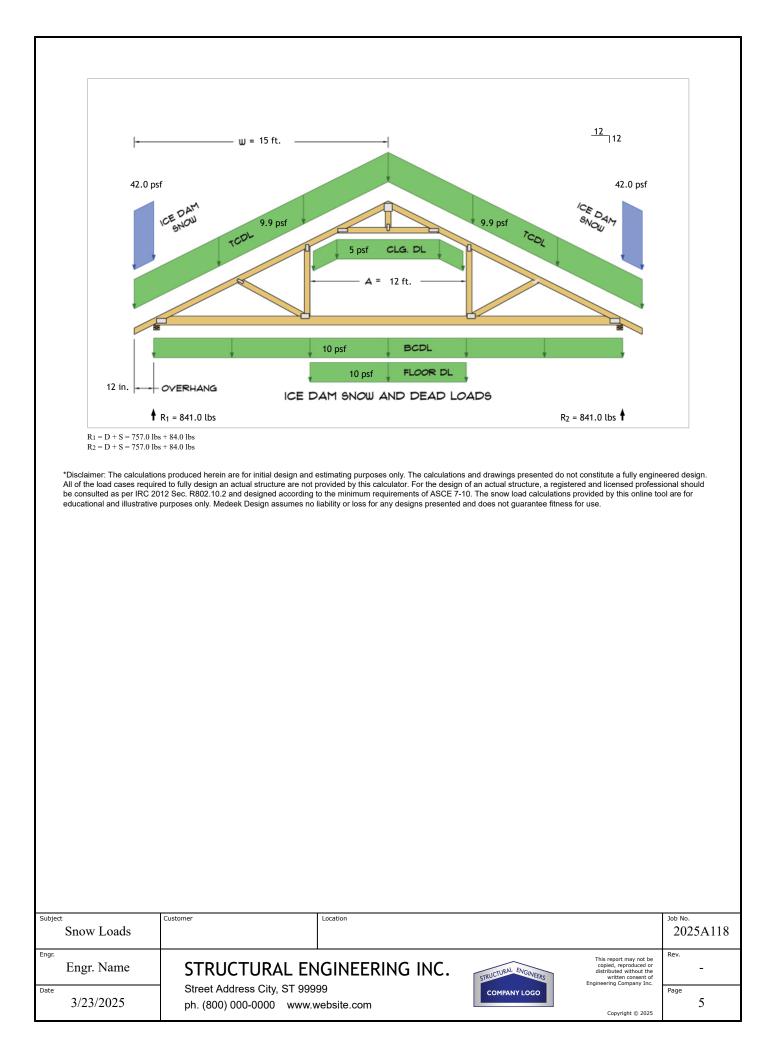
where:


 $p_s =$ Sloped Roof Snow Load in psf $C_s = 1-[(45.00-30)/40] = 0.63 =$ Roof Slope Factor, as determined by ASCE 7-10 Sec. 7.4.1-7.4.4 and Figure 7-2 $p_f =$ Flat Roof Snow Load in psf


Roof surface (Asphalt Shingles) is considered a "non-slippery" roof. For a $C_t = 1.00$ the roof slope factor C_s is given by the solid line of ASCE 7-10 Figure 7-2a.

 $p_s = C_s p_f = (0.63)(21.0) = 13.1 \text{ psf}$


Calculate unbalanced snow load for hip and gable roofs as shown in ASCE 7-10 Figure 7-5. Unbalanced snow loads are required for roof pitches between 1/2 on 12 to 7 on 12. Using the following equations:


$h_{d} = .43\sqrt[3]{l_{u}}\sqrt[4]{p_{g} + 10} - 1.5 \text{ (drift height) [if } l_{u} < 20 \text{ ft., use } l_{u} = 20 \text{ ft.]}$ $l_{d} = \frac{8}{3}h_{d}\sqrt{S} \text{ (width of drift surcharge)}$ $p_{d} = h_{d}\gamma/\sqrt{S} \text{ (drift surcharge snow load)}$			
where: Balanced \downarrow	Balanced \downarrow		
$\gamma = \text{Snow density in pcf, not to exceed 30 pcf.}$ $h_d = \text{Drift height in feet, as determined by eqn. or ASCE 7-10 Fig. 7-9.}$ $l_u = W = \text{Ridge to eave distance in feet, windward side of roof.}$ $S = 12/\text{Roof Pitch}$ $l_d = \text{Width of drift surcharge in feet.}$ $p_d = \text{Drift Surcharge Snow Load in psf}$ $Unbalanced$ $Unbalanced 0.3 \text{ p.}$ $Unbalanced 0.3 \text{ p.}$ $Unbalanced 0.3 \text{ p.}$ $Unbalanced other of 0.3 \text{ p.}$ $Unbalanced for 0.3 \text{ p.}$ $Unbalanced for 0.3 \text{ p.}$ $Unbalanced other of 0.3 \text{ p.}$ $Unbalanced for 0.3 \text{ p.}$ $Unbalanced fo$	Unbalanced W < 20 ft with roof rafter system Unbalanced Unbalanced $0.3 p_s$ $b_a \sqrt{S}$ $b_a \sqrt{N}$ $b_a \sqrt{N}$ Note: Unbalanced loads need not be considered		
	^{ь No.} 2025А11		
Engr. Name STRUCTURAL ENGINEERING INC.			
	ge 2		

 $R_1 = D + L = 757.0 \text{ lbs} + 480.0 \text{ lbs}$ $R_2 = D + L = 757.0 \text{ lbs} + 480.0 \text{ lbs}$

