Snow Load Report

1. Roof and Building Data

Ground Snow Load (Pg):	35.0 psf
Roof Pitch:	4 /12
Risk Category:	Ι
Eave-to-Ridge (W):	50 ft.
Terrain Category:	С
Exposure:	Partially Exposed
Thermal Factor (Ct):	1.20
Roof Surface:	Smooth-Surfaced Tile
Roof System:	Rafter
Spacing:	168 in. o/c
Overhang:	60 in.
Eave-to-Ridge (W): Terrain Category: Exposure: Thermal Factor (Ct): Roof Surface: Roof System: Spacing:	50 ft. C Partially Exposed 1.20 Smooth-Surfaced Tile Rafter 168 in. o/c

2. Design Loads

Top Chord Dead Load:	10	psf
Bottom Chord Dead Load:	0	psf
SF (Slope Factor) = 1/Cosine	$e(\Phi) =$	1.05 (Dead loads specified on a projected horizontal basis take into account the effect of the pitch via a slope factor.)
Adj. TCDL (TCDL x SF):	10.5	psf

3. Design Assumptions

Code Standard:	ASCE 7-10
Number of Plies:	1 PLY
Bottom Chord Pitch:	0 /12

4. Snow Load Calculations

Calculate flat roof snow load $p_{\rm f}$ using the following equation:

 $p_f \!=\! 0.7 C_e C_t I_s p_g$

where:

 $\begin{array}{l} p_{f} = Flat \ Roof \ Snow \ Load \ in \ psf \\ C_{e} = 1.00 = Exposure \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 7-2 \ (Terrain \ Cat. \ C, \ Exp. \ Partially \ Exposed) \\ C_{t} = 1.20 = Thermal \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 7-3 \\ I_{s} = 0.80 = Importance \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 1.5-2 \ (Risk \ Cat. \ I) \\ p_{g} = 35.0 \ psf = Ground \ Snow \ Load \ in \ psf \end{array}$

 $p_f = 0.7C_eC_tI_sp_g = 0.7(1.00)(1.20)(0.80)(35.0) = 23.5 \text{ psf}$

Subject	Customer	Location			Job No.
Snow Loads					2024A753
Engr.				This report may not be	Rev.
Engineer	Company Name		STRUCTURAL ENGINEERS	copied, reproduced or distributed without the written consent of Company Name	-
Date 123 Street City, State 12345 11/1/2024 ph. (888) 777-5555		COMPANY LOGO	,	Page	
	/ebsite.com			1	
	1 ()			Copyright © 2024	

A minimum roof snow load, pm shall apply to monoslope, hip and gable roofs with slopes less than 15 degrees using the following equations:

Where pg is 20 psf or less: pm=Ispg Where p_g exceeds 20 psf: $p_m=I_s(20)$

Roof slope is greater than 15 degrees, the minimum roof snow load, pm, does not apply.

For locations where pg is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall included a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

Roof slope in degrees (18.43°) is greater than W/50 = 1.0, the 5.0 psf rain-on-snow surcharge load does not apply.

Calculate sloped roof snow load ps using the following equation:

 $p_s = C_s p_f$

where:

 $p_s =$ Sloped Roof Snow Load in psf $C_s = 1-[(18.43-15)/55] = 0.94 = Roof Slope Factor, as determined by ASCE 7-10 Sec. 7.4.1-7.4.4 and Figure 7-2$ $p_f = Flat Roof Snow Load in psf$

Roof surface (Smooth-Surfaced Tile) is considered a "slippery" roof. For a $C_t = 1.20$ the roof slope factor C_s is given by the dashed line of ASCE 7-10 Figure 7-2c.

 $p_s = C_s p_f = (0.94)(23.5) = 22.1 \text{ psf}$

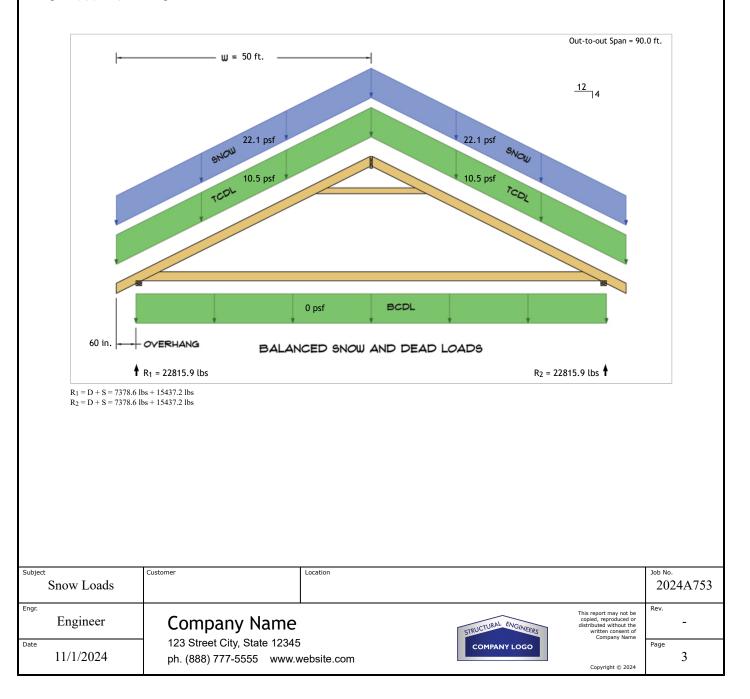
Calculate unbalanced snow load for hip and gable roofs as shown in ASCE 7-10 Figure 7-5. Unbalanced snow loads are required for roof pitches between 1/2 on 12 to 7 on 12. Using the following equations:

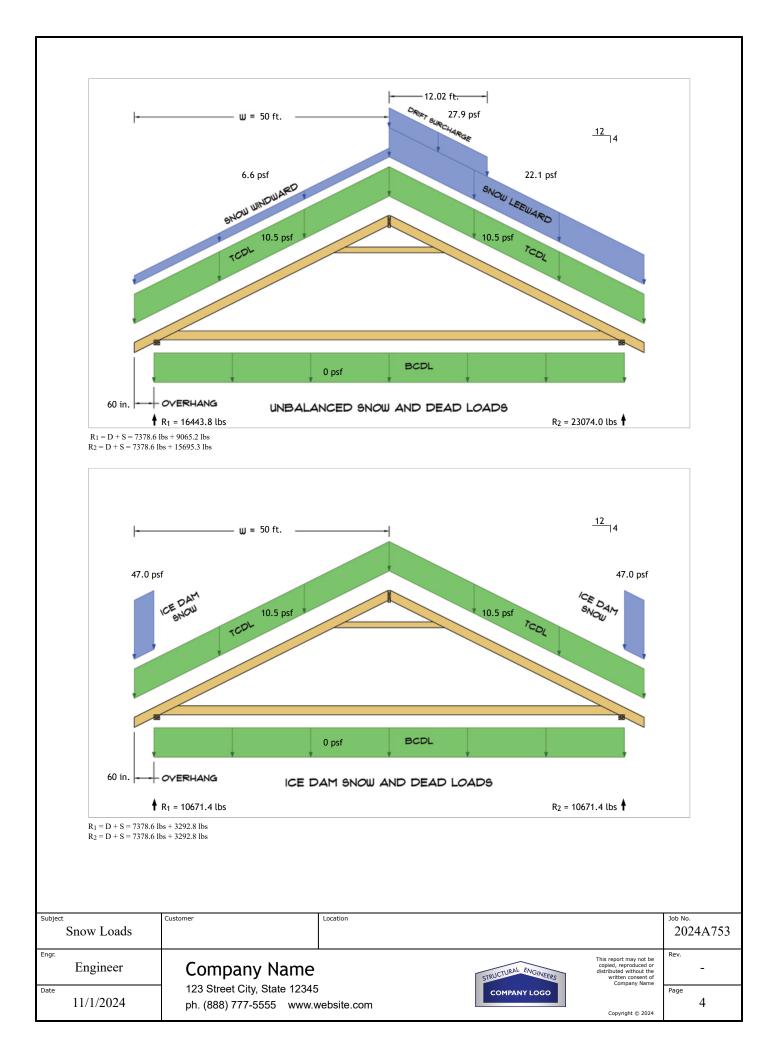
$l_d = \frac{8}{3} h_d \sqrt{S}$ (width	how density) $\overline{0} - 1.5$ (drift height) [if $l_u < 20$ h of drift surcharge) ft surcharge snow load)	ft., use l _u = 20 ft.]	W W	s	
where:			Balanced	↓ ↓ ↓ ↓ ps	
γ = Snow density in pcf, not to exceed 30 pcf. h_d = Drift height in feet, as determined by eqn. or ASCE 7-10 Fig. 7-9. l_u = W = Ridge to eave distance in feet, windward side of roof. S = 12/Roof Pitch l_d = Width of drift surcharge in feet. p_d = Drift Surcharge Snow Load in psf		Unbalanced W < 20 ft with roof rafter system Unbalanced Unbalanced 0.3 ps Unbalanced 0.3 ps Unbalanced 0.3 ps Watch in the system 0.3 ps Unbalanced 0.3 ps Unbalanced 0.3 ps 0.3 ps 0.5 ps			
Subject Snow Loads	Customer	Location			Job No. 2024A753
Engineer	Company Name		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Company Name	Rev.
Date 11/1/2024	123 Street City, State 12345 ph. (888) 777-5555 www.v		COMPANY LOGO	Company Name	Page 2

$$p_{windward} = 0.3p_{s} = (0.3)(22.1) = 6.6 \text{ psf}$$

$$p_{leeward} = p_{s} = 22.1 \text{ psf}$$

$$\gamma = 0.13(35.0) + 14 = 18.55 \text{ pcf}$$


$$h_{d} = .43\sqrt[3]{50}\sqrt[4]{35.0} + 10 - 1.5 = 2.60 \text{ ft. [lu} = 50 \text{ ft.]}$$


$$l_{d} = \frac{8}{3} \times 2.60 \times \sqrt{12/4} = 12.02 \text{ ft.}$$

$$p_{d} = \frac{2.60 \times 18.55}{\sqrt{12/4}} = 27.9 \text{ psf}$$

On warm roofs apply a distributed $2p_f$ snow load on all overhanging portions as per ASCE 7-10 section 7.4.5. No other loads except dead loads shall be present on the roof when this uniformly distributed load is applied.

$$2p_f = (2)(23.5) = 47.0 \text{ psf}$$

