

Snow Load Report

1. Roof and Building Data

Ground Snow Load (Pg): 60.0 psf Roof Pitch: 3 /12 Risk Category: II Eave-to-Ridge (W): 10 ft. Terrain Category: \mathbf{C} Exposure: Fully Exposed Thermal Factor (C_t): 1.20 Roof Surface: Metal Roof System: Common Truss

Spacing: 24 in. o/c Overhang: 12 in.

2. Design Loads

Top Chord Dead Load: 7 psf Bottom Chord Dead Load: 10 psf

 $SF \ (Slope \ Factor) = 1/Cosine(\Phi) = 1.03 \ \ (Dead \ loads \ specified \ on \ a \ projected \ horizontal \ basis take into account the effect of the pitch \ via \ a \ slope \ factor.)$

Adj. TCDL (TCDL x SF): 7.2 psf

3. Design Assumptions

Code Standard: ASCE 7-10 Number of Plies: 1 PLY Bottom Chord Pitch: 0 /12

4. Snow Load Calculations

Calculate flat roof snow load pf using the following equation:

 $p_f = 0.7C_eC_tI_sp_g$

where:

 p_f = Flat Roof Snow Load in psf

C_e = 0.90 = Exposure Factor, as determined by ASCE 7-10 Table 7-2 (Terrain Cat. C, Exp. Fully Exposed)

 $C_t = 1.20$ = Thermal Factor, as determined by ASCE 7-10 Table 7-3

 $I_s = 1.00 = \text{Importance Factor}$, as determined by ASCE 7-10 Table 1.5-2 (Risk Cat. II)

 $p_g = 60.0 \text{ psf} = Ground Snow Load in psf}$

 $p_f = 0.7C_eC_tI_sp_g = 0.7(0.90)(1.20)(1.00)(60.0) = 45.4 \text{ psf}$

Subject	Customer	Location			Job No.
Snow Loads	4 Capri Court		2024A751		
Christian A. Augliera	valley Engineeri	•	valley engineering	This report may not be copied, reproduced or distributed without the written consent of Company Name	Rev.
10/31/2024	P.O. Box 426, Guilderland, N ph. (518) 362-2401 www.v	Y 12084 PLLC lleypartners.net	Copyright © 2024	Page 1	

A minimum roof snow load, pm shall apply to monoslope, hip and gable roofs with slopes less than 15 degrees using the following equations:

Where p_g is 20 psf or less: $p_m=I_sp_g$ Where p_g exceeds 20 psf: $p_m=I_s(20)$

Minimum roof snow load of $p_m = I_s(20) = 1.00 \times 20 = 20.0 \text{ psf}$ and hence does not control.

For locations where pg is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall included a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

Roof slope in degrees (14.04°) is greater than W/50 = 0.2, the 5.0 psf rain-on-snow surcharge load does not apply.

Calculate sloped roof snow load ps using the following equation:

 $p_s = C_s p_f$

where:

p_s = Sloped Roof Snow Load in psf

 $C_s = 1.00 = \text{Roof Slope Factor}$, as determined by ASCE 7-10 Sec. 7.4.1-7.4.4 and Figure 7-2

pf = Flat Roof Snow Load in psf

Roof surface (Metal) is considered a "slippery" roof. For a $C_t = 1.20$ the roof slope factor C_s is given by the dashed line of ASCE 7-10 Figure 7-2c.

$$p_s = C_s p_f = (1.00)(45.4) = 45.4 \text{ psf}$$

Calculate unbalanced snow load for hip and gable roofs as shown in ASCE 7-10 Figure 7-5.

Unbalanced snow loads are required for roof pitches between 1/2 on 12 to 7 on 12.

Using the following equations:

$$\gamma = 0.13p_g + 14 \text{ (snow density)}$$

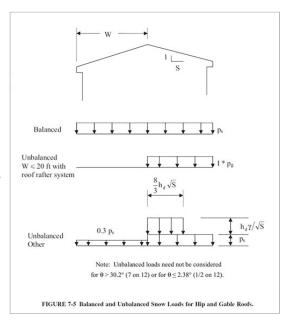
$$h_d = .43\sqrt[3]{l_u}\sqrt[4]{p_g + 10} - 1.5 \text{ (drift height) [if } l_u < 20 \text{ ft., use } l_u = 20 \text{ ft.]}$$

$$l_d = \frac{8}{3}h_d\sqrt{S} \text{ (width of drift surcharge)}$$

$$p_d = h_d\gamma / \sqrt{S} \text{ (drift surcharge snow load)}$$

where:

 γ = Snow density in pcf, not to exceed 30 pcf.

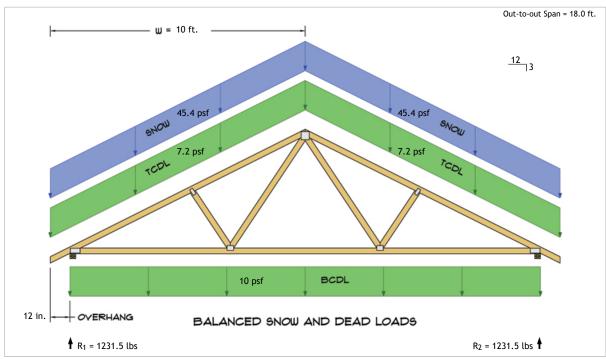

 h_d = Drift height in feet, as determined by eqn. or ASCE 7-10 Fig. 7-9.

 $l_u = W =$ Ridge to eave distance in feet, windward side of roof.

S = 12/Roof Pitch

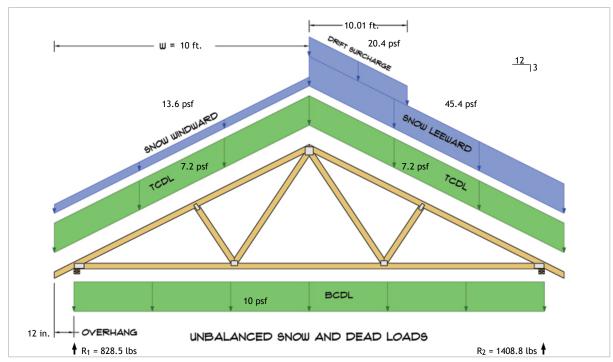
 l_d = Width of drift surcharge in feet.

pd = Drift Surcharge Snow Load in psf

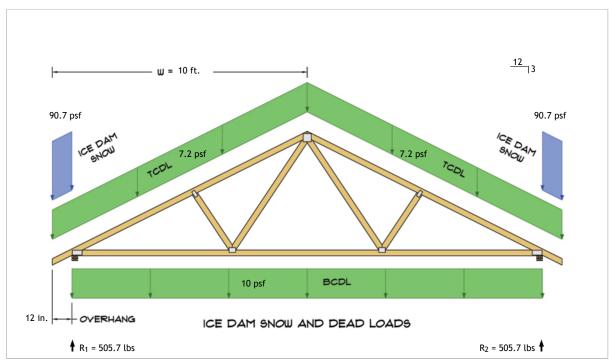

Snow Loads	Customer	Location	4 Capri Court		Job No. 2024A751
Christian A. Augliera	vaccy Engineeri	•	valley engineering PLLC	This report may not be copied, reproduced or distributed without the written consent of Company Name Copyright © 2024	Rev.
10/31/2024	P.O. Box 426, Guilderland, N ph. (518) 362-2401 www.va	NY 12084 valleypartners.net			Page 2

$$\begin{aligned} & \text{pwindward} = 0.3 \text{ps} = (0.3)(45.4) = 13.6 \text{ psf} \\ & \text{pleeward} = \text{ps} = 45.4 \text{ psf} \\ & \gamma = 0.13(60.0) + 14 = 21.80 \text{ pcf} \\ & h_d = .43\sqrt[3]{20}\sqrt[4]{60.0 + 10} - 1.5 = 1.88 \text{ ft. [lu = 20 ft.]} \\ & l_d = \frac{8}{3} \times 1.88 \times \sqrt{12/3} = 10.01 \text{ ft.} \end{aligned}$$

$$p_d = \frac{1.88 \times 21.80}{\sqrt{12/3}} = 20.4 \text{ psf}$$


On warm roofs apply a distributed $2p_f$ snow load on all overhanging portions as per ASCE 7-10 section 7.4.5. No other loads except dead loads shall be present on the roof when this uniformly distributed load is applied.

$$2p_f = (2)(45.4) = 90.7 \text{ psf}$$



$$\begin{split} R_1 &= D + S = 324.3 \text{ lbs} + 907.2 \text{ lbs} \\ R_2 &= D + S = 324.3 \text{ lbs} + 907.2 \text{ lbs} \end{split}$$

Snow Loads	Customer	Location	4 Capri Court		Job No. 2024A751
Christian A. Augliera	vaccy Engineeri	•	valley engineering PLLC	This report may not be copied, reproduced or distributed without the written consent of Company Name	Rev.
10/31/2024	P.O. Box 426, Guilderland, N ph. (518) 362-2401 www.v	NY 12084 valleypartners.net		Copyright © 2024	Page 3

 $R_1 = D + S = 324.3 \text{ lbs} + 504.2 \text{ lbs}$ $R_2 = D + S = 324.3 \text{ lbs} + 1084.4 \text{ lbs}$

 $R_1 = D + S = 324.3 \text{ lbs} + 181.4 \text{ lbs}$ $R_2 = D + S = 324.3 \text{ lbs} + 181.4 \text{ lbs}$

Snow Loads	Customer Location 4 Capri Court		Job No. 2024A751		
Christian A. Augliera	Valley Engineering PLLC		This report may not be copied, reproduced or distributed without the valley engineering Valley engineering		Rev.
10/31/2024	P.O. Box 426, Guilderland, N ph. (518) 362-2401 www.v	Y 12084 PLLC alleypartners.net		Page 4	