
FAILED

Beam Design

1 piece(s) 1.5" x 9.25" DF No. 1

Design Results	Location	Actual	Allowed	Result	CD	Load Combination
Member Reaction (lbs)	S4	1253.9	3281.3	38%	-	D+L
Shear (lbs)	73"	926.9	1665.0	56%	1.0	D+L
Neg. Moment (ft-lbs)	72"	1002	1692	59%	1.0	D+L
Pos. Moment (ft-lbs)	36"	1764	1692	104%	1.0	D+L
LL Deflection (in)	34"	0.0309	0.2	L/2329	-	D+L
TL Deflection (in)	34"	0.0469	0.3	L/1534	-	D+L

Supports	Bearing	Dead	Live (F)	Live (R)	Snow	Wind	Seismic	Factored
S3 - Column - DF	3.5"	204.2	388.7	-	101.6	-	-	592.8/204.2
S4 - Column - DF	3.5"	421.2	832.6	-	171.9	-	-	1253.9/421.2
S2 - Column - STL	4.0"	-5.8	-1.3	-	-23.4	-	-	-5.8/-22.3

Loads	Location	Dead	Live (F)	Live (R)	Snow	Wind	Seismic	Comments
D0 - Uniform (plf)	0.0" - 144.0"	3.3	-	-	-	-	-	Self Weight
D1 - Uniform (plf)	84.0" - 132.0"	20.0	55.0	-	-	-	-	
P2 - Point (lbs)	36.0"	500	1000	-	250	-	-	

Subject Beam Design	Customer John Smith	Location	123 S 234 W Provo, UT 84604		Job. No. 2025-002
Engr. Nathaniel Wilkerson	MEDELK LINGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC,	Rev.
08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 design.	n 84058 .medeek.com	COMPANY LOGO	Copyright © 2025	Page 1

1. Beam Data

2. Design Options

Beam Type:	Sawn Lumber	Lateral Support (B):	unbraced
Species:	Douglas Fir-Larch	Lateral Support (T):	unbraced
Grade:	DF No. 1	Defl. Limits:	360 240
Size:	1.5 x 9.25 in.	Load Duration (V):	1.0
Beam Length:	12.0 ft.	Load Duration (M):	1.0/1.0
Beam Ply (N):	1	Exposure:	dry
Beam Weight:	39.5 lbs	Temperature:	$T \le 100$ °F
Code Standards:	ASCE7-22, NDS 2024	Orientation:	Vertical
Design Method:	ASD / Euler-Bernoulli	Incised:	No
Notes:	This is a test.	Rep. Members:	No

3. Beam Calculations

Determine reference design values, sectional properties and self weight of beam:

$$A = b \times d = 1.5 \times 9.25 = 13.875 \text{ in.}^2$$

$$S_x = \frac{bd^2}{6} = (1.5)(9.25)^2/6 = 21.391 \text{ in.}^3, \quad S_y = \frac{b^2d}{6} = (1.5)^2(9.25)/6 = 3.469 \text{ in.}^3$$

$$I_X = \frac{bd^3}{12} = (1.5)(9.25)^3/12 = 98.932 \text{ in.}^4, \quad I_y = \frac{b^3d}{12} = (1.5)^3(9.25)/12 = 2.602 \text{ in.}^4$$

Reference Design Values from Table 4A NDS Supplement (Reference Design Values for Visually Graded Dimension Lumber, 2" - 4" thick).

Species & Grade	F _b	F _t	F_{v}	$F_{c\perp}$	F _c	Е	E _{min}	SG
DF No.1	1000	675	180	625	1500	1700000	620000	0.5

Beam Design	John Smith	Location	123 S 234 W Provo, UT 84604		2025 - 002
Nathaniel Wilkerson	MEDELK LINGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC,	Rev.
08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 design	.medeek.com	COMPANY LOGO	Convidet © 2025	Page 2

4. Adjustment Factors

Factor	Description	F _b	F _t	$F_{\mathbf{v}}$	F _c	F _{c⊥}	E/E _{min}
C_{D}	Load Duration Factor	1.0/1.0	-	1.0	-	-	-
$C_{\mathbf{M}}$	Wet Service Factor	1.0 ^b	1.0	1.0	1.0 ^c	1.0	1.0
C _t	Temperature Factor	1.0	1.0	1.0	1.0	1.0	1.0
C_{L}	Beam Stability Factor	0.86/0.86	-	-	-	-	-
C_{F}	Size Factor	1.1	1.1	-	1.0	-	-
C_{fu}	Flat Use Factor	1.2 ^d	-	-	-	-	-
C _i	Incising Factor	1.0	1.0	1.0	1.0	1.0	1.0
C_{r}	Rep. Member Factor	1.0	-	-	-	-	-

a) Adjustment factors per AWC NDS 2024 and NDS 2024 Supplement.

5. Self Weight

The following formula shall be used to determine the density of wood (lbs/ft³). (NDS Supplement Sec. 3.1.3)

$$\rho_{\rm W} = 62.4 \left[\frac{\mathit{SG}}{1 + \mathit{SG}(0.009)(\mathit{m.c})} \right] \left[1 + \frac{\mathit{m.c.}}{100} \right] = 62.4 \left[\frac{0.5}{1 + 0.5(0.009)(19)} \right] \left[1 + \frac{19}{100} \right] = 34.2 \; lbs/ft^3$$

where:

 $\rho_{\rm W}$ = Density of wood (lbs/ft³)

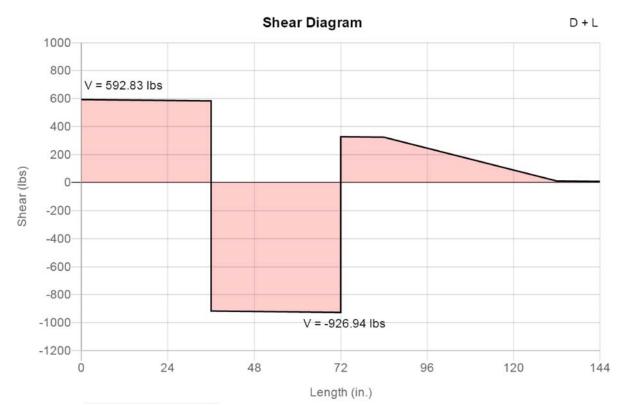
SG = 0.5 Specific gravity of wood (dimensionless)

m.c. = 19 % (Max. moisture content at dry service conditions)

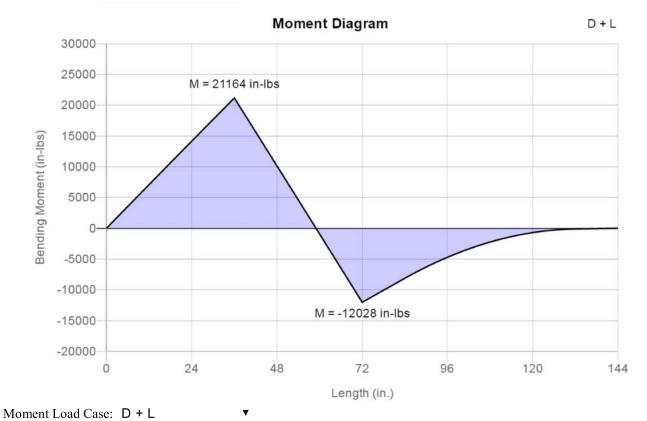
Volume_{heam} = N[A × L] = 1 × [13.875 × 144.0] ÷
$$(12 \text{ in./ft.})^3$$
 = 1.16 ft³

Self Weight (W_S) =
$$\rho_w \times Volume_{beam} = 34.2 \times 1.16 = 39.55$$
 lbs

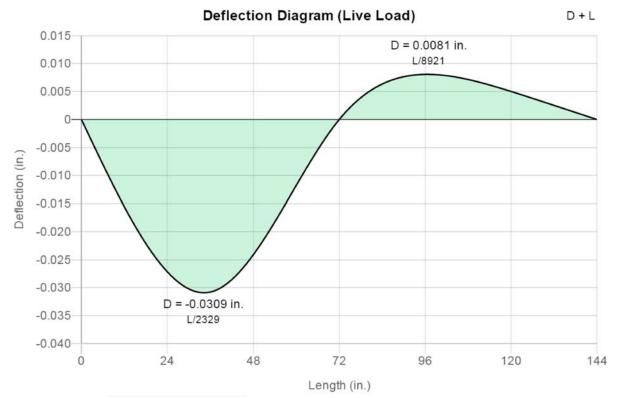
Distributed Self Weight (w_s) =
$$\frac{W_S}{L} = \frac{39.55}{12.0} = 3.296 \text{ plf}$$

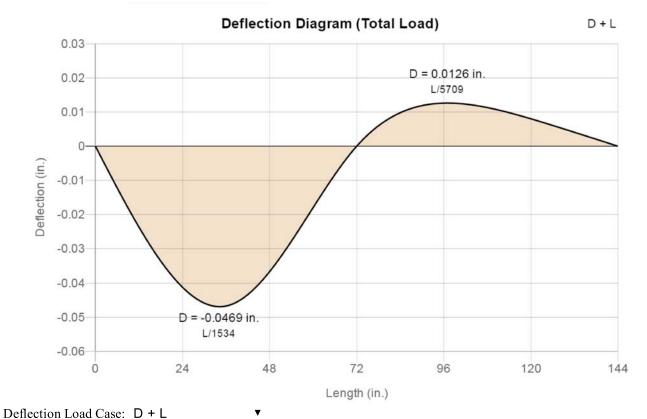

Subject Beam Design	Customer John Smith	Location 1	23 S 234 W Provo, UT 84604		^{Job. No.} 2025-002
Nathaniel Wilkerson	MEDELK LITOINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC.	Rev.
Date 08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 desian	n 84058 .medeek.com	COMPANY LOGO	angineering deep	Page 3

Copyright © 2025


b) When $(F_b)(C_F) \le 1,150 \text{ psi}$, $C_M = 1.0$.

c) When $(F_c)(C_F) \le 750 \text{ psi}$, $C_M = 1.0$.


d) Only applies when sawn lumber or glulam beams are loaded in bending about the y-y axis.


Shear Load Case: D + L ▼

Beam Design	John Smith	Location	123 S 234 W Provo, UT 84604		2025 - 002
Nathaniel Wilkerson	MEDELK LITOINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC,	Rev.
08/05/2025	1927 S 1030 W Orem, Utah ph. 425-652-4188 design	n 84058 .medeek.com	COMPANY LOGO	Copyright © 2025	Page 4

Deflection Load Case: D + L ▼

Beam Design	John Smith	Location [123 S 234 W Provo, UT 84604		2025 - 002
Nathaniel Wilkerson	MLDLLK LINGINL		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC,	Rev.
08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 design	.medeek.com	COMPANY LOGO	Copyright © 2025	Page 5

1.) Shear:

Members subject to shear stresses shall be proportioned so that the actual shear stress parallel to grain or shear force at any cross section of the bending member shall not exceed the adjusted shear design value:

$$f_v \le F_v$$
' (NDS Sec. 3.4.1)

where:

$$f_V = \frac{3V}{2A}$$

$$F_v' = F_v(C_D)(C_M)(C_t)$$

$$F_{vx}' = (180)(1.0)(1.0)(1.0) = 180.00 \text{ psi}$$

$${
m f_V} = rac{3V}{2(N imes A)} = rac{3(926.94)}{2(1 imes 13.875)} = 100.21~{
m psi}$$

$$f_v = 100.21 \text{ psi} < F_{vx}' = 180.00 \text{ psi} \text{ (CSI} = 0.56) \rightarrow \textbf{OK}$$

Calculations shown for load combination "D + L" at location x = 73 in.

2.) Deflection:

Bending deflections calculated per standard method of engineering mechanics for live load and total load:

LL Allowable: L/360 TL Allowable: L/240

$$E_x' = E_x(C_M)(C_t)(C_i) = 1700000(1.0)(1.0)(1.0) = 1700000 \text{ psi}$$

 $\Delta_{LL} = -0.0309 \text{ in.}$

$$(L/d)_{LL} = 72.0 / 0.0309 = 2329$$

$$\Delta_{LL} = -0.0309 \text{ in} = L/2329 < L/360 \rightarrow \text{OK}$$

Calculations shown for load combination "D + L" at location x = 34 in.

 $\Delta_{\rm TL}$ = -0.0469 in.

$$(L/d)_{TL} = 72.0 / 0.0469 = 1534$$

$$\Delta_{\text{TL}} = -0.0469 \text{ in} = \text{L}/1534 < \text{L}/240 \rightarrow \text{OK}$$

Calculations shown for load combination "D + L" at location x = 34 in.

Subject	Customer	Location			Job. No.
Beam Design	John Smith		123 S 234 W Provo, UT 84604		2025-002
Nathaniel Wilkerson	MEDELK LINGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC,	Rev. <u>-</u>
08/05/2025	1927 S 1030 W Orem, Utah ph. 425-652-4188 design		COMPANY LOGO	Copyright © 2025	Page 6

3.) Bending:

Members subject to bending stresses shall be proportioned so that the actual bending stress or moment shall not exceed the adjusted bending design value:

$$f_b \le F_b'$$
 (NDS Sec. 3.3.1)

where:

$$\begin{split} \mathbf{f}_b &= \mathbf{M} \ / \ \mathbf{S} \\ \mathbf{F}_b' &= \mathbf{F}_b(\mathbf{C}_D)(\mathbf{C}_M)(\mathbf{C}_t)(\mathbf{C}_L)(\mathbf{C}_F)(\mathbf{C}_{fu})(\mathbf{C}_i)(\mathbf{C}_r) \end{split}$$

Negative Bending: Beam is unbraced along its compression (bottom) edge, lateral stability is considered below:

Slenderness Ratio for bending member R_B:

 $l_u = Unbraced Length = 72.0 in.$

$$l_{\rm u}/d = \frac{72.0}{9.25} = 7.78$$

$$l_e = 1.63l_u + 3d = 1.63(72.0) + 3(9.25) = 145.11$$
 in. (NDS Table 3.3.3)

$$R_b = \sqrt{\frac{l_e d}{b^2}} = \sqrt{\frac{145.11(9.25)}{(1 \times 1.5)^2}} = 24.42$$

$$R_b = 24.42 < 50 \rightarrow OK$$

Euler-based ASD critical buckling value for bending members:

$$E_{minv}' = E_{minv}(C_M)(C_t)(C_i) = 620000(1.0)(1.0)(1.0) = 620000 \text{ psi}$$

$$F_{bE} = \frac{1.2E'_{miny}}{(R_b)^2} = \frac{1.2(620000)}{(24.42)^2} = 1247.14 \text{ psi}$$

Beam stability factor:

$$C_{L} = \frac{1 + F_{be}/F_{bx}^{*}}{1.9} - \sqrt{\left(\frac{1 + F_{be}/F_{bx}^{*}}{1.9}\right)^{2} - \frac{F_{be}/F_{bx}^{*}}{0.95}} = \frac{1 + 1247.14/1100.0}{1.9} - \sqrt{\left(\frac{1 + 1247.14/1100.0}{1.9}\right)^{2} - \frac{1247.14/1100.0}{0.95}} = 0.863$$

 $F_b' = (1000)(1.0)(1.0)(1.0)(0.863)(1.1)(1.0)(1.0)(1.0) = 949.0 \text{ psi}$

$$f_b = \frac{M}{N \times S} = \frac{12028}{1 \times 21.39} = 562.3 \text{ psi}$$

$$f_b = 562.3 \text{ psi} < F_{bx}' = 949.0 \text{ psi} \text{ (CSI} = 0.59) \rightarrow \text{OK}$$

Calculations shown for load combination "D + L" at location x = 72 in.

Subject	Customer	Location			Job. No.
Beam Design	John Smith	123 S 234 W Provo, UT 84604			2025-002
Nathaniel Wilkerson	MEDEEK ENGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC. Copyright © 2025	Rev.
08/05/2025	1927 S 1030 W Orem, Utah ph. 425-652-4188 design	medeek.com	COMPANY LOGO		Page 7

Positive Bending: Beam is unbraced along its compression (top) edge, lateral stability is considered below:

Slenderness Ratio for bending member R_B:

 $l_u = Unbraced Length = 72.0 in.$

$$l_{\rm u}/d = \frac{72.0}{9.25} = 7.78$$

$$l_e = 1.63l_u + 3d = 1.63(72.0) + 3(9.25) = 145.11$$
 in. (NDS Table 3.3.3)

$$R_b = \sqrt{\frac{l_e d}{b^2}} = \sqrt{\frac{145.11(9.25)}{(1 \times 1.5)^2}} = 24.42$$

$$R_b = 24.42 < 50 \rightarrow OK$$

Euler-based ASD critical buckling value for bending members:

$$E_{minv}' = E_{minv}(C_M)(C_i)(C_i) = 620000(1.0)(1.0)(1.0) = 620000 \text{ psi}$$

$$F_{bE} = \frac{1.2E'_{miny}}{(R_b)^2} = \frac{1.2(620000)}{(24.42)^2} = 1247.14 \text{ psi}$$

Beam stability factor:

$$C_{L} = \frac{1 + F_{be}/F_{bx}^{*}}{1.9} - \sqrt{\left(\frac{1 + F_{be}/F_{bx}^{*}}{1.9}\right)^{2} - \frac{F_{be}/F_{bx}^{*}}{0.95}} = \frac{1 + 1247.14/1100.0}{1.9} - \sqrt{\left(\frac{1 + 1247.14/1100.0}{1.9}\right)^{2} - \frac{1247.14/1100.0}{0.95}} = 0.863$$

 $F_b' = (1000)(1.0)(1.0)(1.0)(0.863)(1.1)(1.0)(1.0)(1.0) = 949.0 \text{ psi}$

$$f_b = \frac{M}{N \times S} = \frac{21164}{1 \times 21.39} = 989.4 \text{ psi}$$

$$f_b = 989.4 \text{ psi} > F_{bx}' = 949.0 \text{ psi} \text{ (CSI} = 1.04) \rightarrow NG$$

Calculations shown for load combination "D + L" at location x = 36 in.

Subject	Customer	Location			Job. No.
Beam Design	John Smith 123 S 234 W Provo, UT 84604		2025-002		
Nathaniel Wilkerson	MEDEEK ENGINEERING LLC This report may not be copied, reproduced or distributed without the written consent of Medeek.			copied, reproduced or distributed without the	Rev. <u>-</u>
Date	1927 S 1030 W Orem, Utah	1 84058	COMPANY LOGO		Page
08/05/2025	ph. 425-652-4188 design.medeek.com			8	

Copyright © 2025

4.) Bearing:

Members subject to bearing stresses perpendicular to the grain shall be proportioned so that the actual compressive stress perpendicular to grain shall be based on the net bearing area and shall not exceed the adjusted compression design value perpendicular to grain:

$$f_{c\perp} \leq F_{c\perp}$$
 (NDS Sec. 3.10.2)

where:

$$F_{c\perp}' = F_{c\perp}(C_M)(C_t)(C_i)$$

$$F_{c\perp x}' = (625)(1.0)(1.0)(1.0) = 625.00 \text{ psi}$$

$$f_{c\perp} = \frac{R}{A_b}$$

$$A_b = b \times l_b = 1.5 \times 3.5 = 5.25 \text{ in}^2$$

$$f_{c\perp} = \frac{R}{N \times A_b} = \frac{1253.88}{1 \times 5.25} = 238.8 \text{ psi}$$

$$f_{c\perp} = 238.8 \text{ psi} < F_{c\perp x'} = 625.00 \text{ psi} \text{ (CSI} = 0.38) \rightarrow \text{OK}$$

Calculations shown for load combination "D + L" at support S4.

^{*}Disclaimer: The output and calculations produced herein are based on building code-accepted design values and standard engineering and analysis methods. Medeek Engineering expressly disclaims all other warranties related to this software. A licensed design professional or qualified engineer should be consulted to verify that the appropriate inputs have been utilized, prior to anyone relying on such output as evidence of suitability for a particular application. Use of this software is not intended to circumvent the need for a design professional as determined by the jurisdiction. All loads, dimensions, supports and design options have been provided by Nathaniel Wilkerson.

Beam Design	John Smith	Location	123 S 234 W Provo, UT 84604		2025 - 00	02
Nathaniel Wilkerson	MEDELK LINGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC.	Rev.	
08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 design.	i 84058 .medeek.com	COMPANY LOGO		Page 9	