

Beam Design

1. Beam Data

Load Type: Uniform Dist. Load
Support: Simple Beam
Beam Type: Glulam
Species: Western Species
Grade: 24F-V4 1.8E DF/DF
Size: 5.5 x 16.5
Design Span (L): 28.25 ft.
Clear Span: 28.00 ft.
Total Span: 28.50 ft.
Bearing (lb): 3 in.
Quantity (N): 1

2. Design Loads

Live Load: 240 plf
Dead Load: 60 plf
Selfweight: 601.1 lbs
Dist. Selfweight: 21.28 plf
Total Weight: 606.4 lbs

3. Design Options

Lateral Support: braced
Defl. Limits: 360|240
Load Duration: 1.15
Exposure: dry
Temperature: T <= 100°F
Orientation: Vertical

4. Design Assumptions and Notes

Code Standard: IBC 2015, NDS 2015
Bending Stress: Parallel to Grain
Notes:

5. Adjustment Factors

Factor	Description	F _b	F _t	F _v	F _c	F _{c⊥}	E/E _{min}
C _D	Load Duration Factor	1.15	1.15	1.15	1.15	-	-
C _M	Wet Service Factor	1	1	1	1	1	1
C _t	Temperature Factor	1	1	1	1	1	1
C _L	Beam Stability Factor	1	-	-	-	-	-
C _V	Volume Factor	0.934 ^b	-	-	-	-	-
C _{fu}	Flat Use Factor	N/A ^c	-	-	-	-	-

a) Adjustment factors per AWC NDS 2015 and NDS 2015 Supplement.

b) The volume factor, C_V, shall not apply simultaneously with the beam stability factor, C_L. The lesser factor shall apply.

c) Only applies when glulam beam is loaded in bending about the y-y axis.

Subject Beam Design	Customer	Location	Job No. 110 Whitman
Engr. Engineer Name	ENGINEERING COMPANY INC. Street Address City, CA 99999 ph. (800) 000-0000 www.website.com		This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.
Date 1/29/2026	COMPANY LOGO	Rev. -	Page 1

6. Beam Calculations

Determine reference design values, sectional properties and self weight of beam:

$$A = b \times d$$

$$S_x = \frac{bd^2}{6}, \quad S_y = \frac{b^2d}{6}$$

$$I_x = \frac{bd^3}{12}, \quad I_y = \frac{b^3d}{12}$$

where:

b = Breadth of rectangular beam in bending (in.)

d = Depth of rectangular beam in bending (in.)

A = Cross sectional area of beam (in.²)

S_x = Section modulus about the X-X axis (in.³)

S_y = Section modulus about the Y-Y axis (in.³)

I_x = Moment of inertia about the X-X axis (in.⁴)

I_y = Moment of inertia about the Y-Y axis (in.⁴)

$b = 5.500$ in.

$d = 16.500$ in.

$$A = 5.500 \times 16.500 = 90.75 \text{ in.}^2$$

$$S_x = (5.500)(16.500)^2/6 = 249.56 \text{ in.}^3$$

$$S_y = (5.500)^2(16.500)/6 = 83.19 \text{ in.}^3$$

$$I_x = (5.500)(16.500)^3/12 = 2058.89 \text{ in.}^4$$

$$I_y = (5.500)^3(16.500)/12 = 228.77 \text{ in.}^4$$

Reference Design Values from Table 5A NDS Supplement (Reference Design Values for Structural Glue Laminated Softwood Timber Combinations).

Species & Grade	F_{bx+}	F_{bx-}	$F_{c \perp x}$	F_{vx}	E_x	E_{minx}	F_{by}	$F_{c \perp y}$	F_{vy}	E_y	E_{miny}	F_t	F_c	G
24F-V4 1.8E DF/DF	2400	1850	650	265	1800000	950000	1450	560	230	1600000	850000	1100	1650	0.5

The following formula shall be used to determine the density of wood (lbs/ft³). (NDS Supplement Sec. 3.1.3)

$$\rho_w = 62.4 \left[\frac{G}{1 + G(0.009)(m.c.)} \right] \left[1 + \frac{m.c.}{100} \right]$$

where:

ρ_w = Density of wood (lbs/ft³)

G = Specific gravity of wood (dimensionless)

$m.c.$ = Moisture content of wood (percentile)

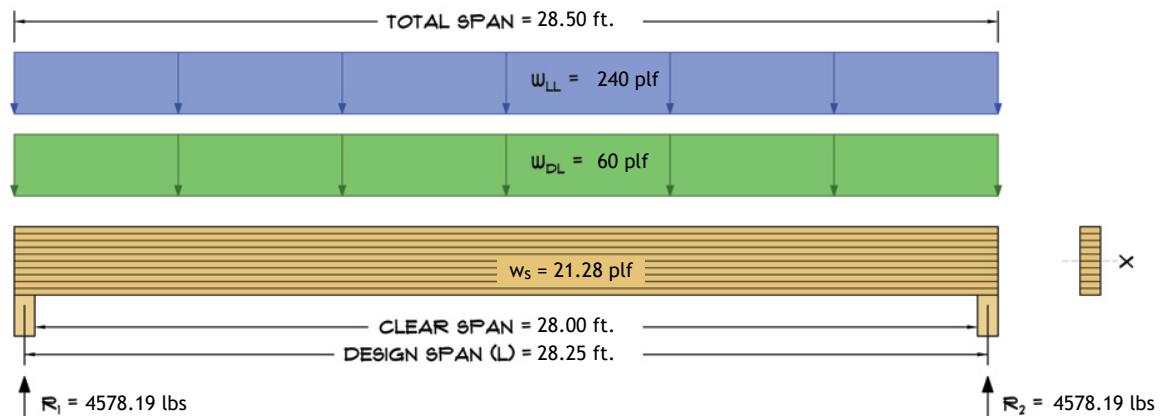
$G = 0.5$

$m.c. = 16\%$ (Max. moisture content at dry service conditions)

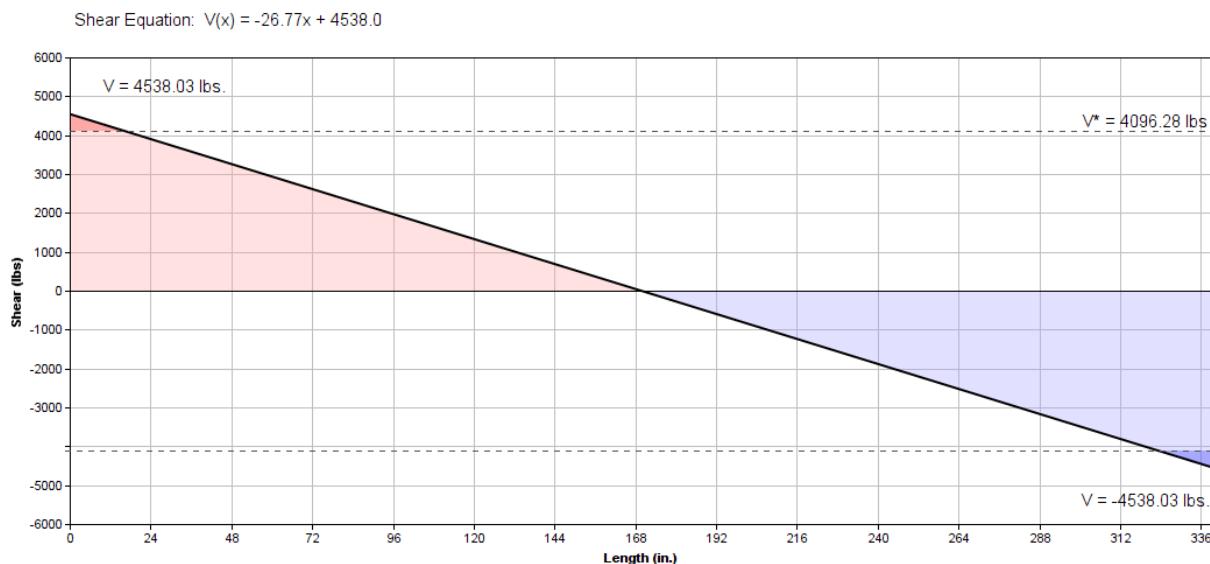
Subject Beam Design	Customer	Location	Job No. 110 Whitman
Engr. Engineer Name	ENGINEERING COMPANY INC.		This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc. Rev. -
Date 1/29/2026	Street Address City, CA 99999 ph. (800) 000-0000 www.website.com	STRUCTURAL ENGINEERS COMPANY LOGO	Page 2 Copyright © 2026

$$\rho_w = 62.4 \left[\frac{0.5}{1 + 0.5(0.009)(16)} \right] \left[1 + \frac{16}{100} \right] = 33.76 \text{ lbs/ft}^3$$

$$\text{Volume}_{\text{total}} = N[A \times (L + l_b)] = 1 \times [90.75 \times (339.00 + 3)] \times (12 \text{ in./ft.})^3 = 17.96 \text{ ft}^3$$

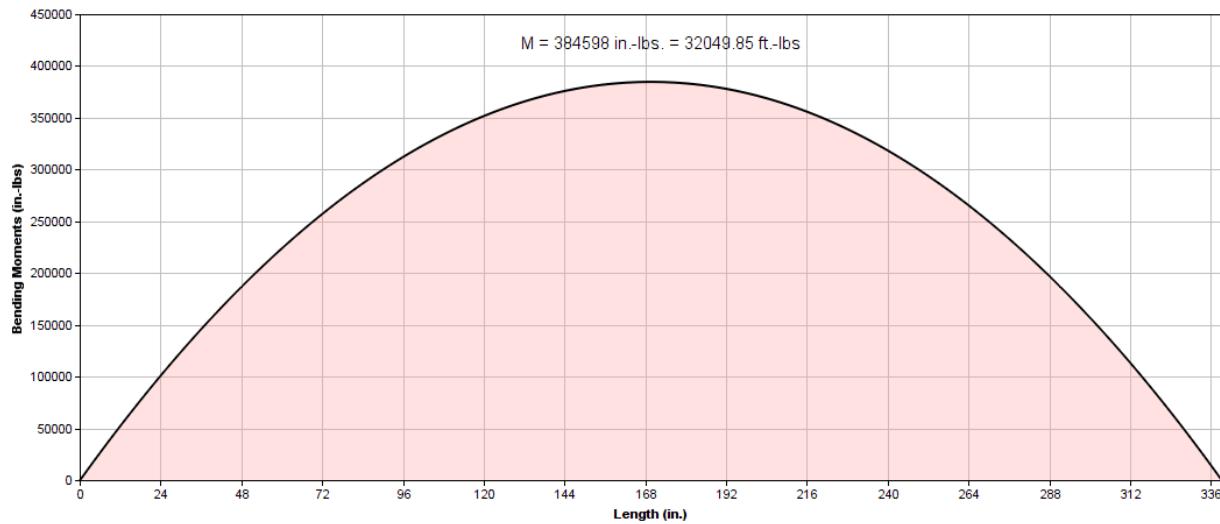

$$\text{Volume}_{\text{span}} = N[A \times L] = 1 \times [90.75 \times 339.00] \times (12 \text{ in./ft.})^3 = 17.80 \text{ ft}^3$$

$$\text{Total Weight (W}_T\text{)} = \rho_w \times \text{Volume}_{\text{total}} = 33.76 \times 17.96 = 606.4 \text{ lbs}$$


$$\text{Self Weight (W}_S\text{)} = \rho_w \times \text{Volume}_{\text{span}} = 33.76 \times 17.80 = 601.1 \text{ lbs}$$

$$\text{Distributed Self Weight (w}_s\text{)} = \frac{W_s}{L} = \frac{601.1}{28.25} = 21.28 \text{ plf}$$

Load, Shear and Moment Diagrams:


Beam - Shear Diagram

Subject Beam Design	Customer	Location	Job No. 110 Whitman
Engr. Engineer Name	ENGINEERING COMPANY INC.		Rev. -
Date 1/29/2026	Street Address City, CA 99999 ph. (800) 000-0000 www.website.com	 This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.	Page 3 Copyright © 2026

Beam - Moment Diagram

Moment Equation: $M(x) = -13.39x^2 + 4538.0x$

1.) Bending:

Members subject to bending stresses shall be proportioned so that the actual bending stress or moment shall not exceed the adjusted bending design value:

$$f_b \leq F_{b'} \quad (\text{NDS Sec. 3.3.1})$$

where:

$$f_b = M / S$$

$$F_{b'} = F_{bx}(C_D)(C_M)(C_t)(C_V) \quad \text{or} \quad F_{bx'} = F_{bx}(C_D)(C_M)(C_t)(C_L)$$

Beam is braced laterally along its compression edge. Lateral stability is not a consideration:

$$C_L = \text{Beam Stability Factor} = 1.0$$

$$C_V = \left(\frac{21}{L} \right)^{0.1} \left(\frac{12}{d} \right)^{0.1} \left(\frac{5.125}{b} \right)^{0.1} = \left(\frac{21}{28.250} \right)^{0.1} \left(\frac{12}{16.5} \right)^{0.1} \left(\frac{5.125}{5.5} \right)^{0.1} = 0.934$$

Volume effect governs over lateral stability:

$$C_V = 0.934 < C_L = 1$$

$$F_{bx'} = (2400)(1.15)(1)(1)(0.934) = 2577.1 \text{ psi}$$

$$f_b = \frac{M}{N \times S_x} = \frac{384598}{1 \times 249.56} = 1541.1 \text{ psi}$$

$$f_b = 1541.1 \text{ psi} < F_{bx'} = 2577.1 \text{ psi} \quad (\text{CSI} = 0.60) \quad ? \quad \text{OK}$$

Subject Beam Design	Customer	Location	Job No. 110 Whitman
Engr. Engineer Name	ENGINEERING COMPANY INC.		This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.
Date 1/29/2026	Street Address City, CA 99999 ph. (800) 000-0000 www.website.com	STRUCTURAL ENGINEERS COMPANY LOGO	Rev. - Page 4 Copyright © 2026

2.) Shear:

Members subject to shear stresses shall be proportioned so that the actual shear stress parallel to grain or shear force at any cross section of the bending member shall not exceed the adjusted shear design value:

$$f_v \leq F_v' \quad (NDS \text{ Sec. 3.4.1})$$

where:

$$f_v = \frac{3V}{2A}$$

$$F_v' = F_v(C_D)(C_M)(C_t)$$

$$F_{vx}' = (265)(1.15)(1)(1) = 304.75 \text{ psi}$$

Shear Reduction: For beams supported by full bearing on one surface and loads applied to the opposite surface, uniformly distributed loads within a distance, d , from supports equal to the depth of the bending member shall be permitted to be ignored. For beams supported by full bearing on one surface and loads applied to the opposite surface, concentrated loads within a distance equal to the depth of the bending member from supports shall be permitted to be multiplied by x/d where x is the distance from the beam support face to the load. See NDS 2015, Figure 3C.

$$f_v^* = \frac{3V^*}{2(N \times A)} = \frac{3(4096.28)}{2(1 \times 90.75)} = 67.71 \text{ psi}$$

$$f_v^* = 67.71 \text{ psi} < F_{vx}' = 304.75 \text{ psi} \quad (\text{CSI} = 0.22) \quad ? \text{ OK}$$

No Reduction in Shear (conservative):

$$f_v = \frac{3V}{2(N \times A)} = \frac{3(4538.03)}{2(1 \times 90.75)} = 75.01 \text{ psi}$$

$$f_v = 75.01 \text{ psi} < F_{vx}' = 304.75 \text{ psi} \quad (\text{CSI} = 0.25) \quad ? \text{ OK}$$

3.) Deflection:

Bending deflections calculated per standard method of engineering mechanics for live load and total load:

LL Allowable: $L/360$

TL Allowable: $L/240$

$$E_x' = E_x(C_M)(C_t) = 1800000(1)(1) = 1800000 \text{ psi}$$

Subject Beam Design	Customer	Location	Job No. 110 Whitman
Engr. Engineer Name	ENGINEERING COMPANY INC.		This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.
Date 1/29/2026	Street Address City, CA 99999 ph. (800) 000-0000 www.website.com	STRUCTURAL ENGINEERS COMPANY LOGO	Rev. - Page 5 Copyright © 2026

$$\Delta_{LL} = \frac{5w_{LL}L^4}{384E'_x(N \times I_x)} = \frac{5(240)(28.250)^4}{384(1800000)(1 \times 2058.89)} \times \left(12 \frac{\text{in.}}{\text{ft.}}\right)^3 = 0.93 \text{ in.}$$

$$(L/d)_{LL} = 339.00 / 0.93 = 365$$

$$\Delta_{LL} = 0.93 \text{ in} = L/365 < L/360 \text{ ? } \text{OK}$$

$$\Delta_{TL} = \frac{5(w_{TL} + w_s)L^4}{384E'_x(N \times I_x)} = \frac{5(300 + 21.28)(28.250)^4}{384(1800000)(1 \times 2058.89)} \times \left(12 \frac{\text{in.}}{\text{ft.}}\right)^3 = 1.24 \text{ in.}$$

$$(L/d)_{TL} = 339.00 / 1.24 = 273$$

$$\Delta_{TL} = 1.24 \text{ in} = L/273 < L/240 \text{ ? } \text{OK}$$

4.) Bearing:

Members subject to bearing stresses perpendicular to the grain shall be proportioned so that the actual compressive stress perpendicular to grain shall be based on the net bearing area and shall not exceed the adjusted compression design value perpendicular to grain:

$$f_{c\perp} \leq F_{c\perp}' \text{ (NDS Sec. 3.10.2)}$$

where:

$$f_{c\perp} = \frac{R}{A_b}$$

$$F_{c\perp}' = F_{c\perp}(C_M)(C_t)$$

$$F_{c\perp x}' = (650)(1)(1) = 650.00 \text{ psi}$$

$$A_b = b \times l_b = 5.5 \times 3 = 16.50 \text{ in}^2$$

$$f_{c\perp} = \frac{R}{N \times A_b} = \frac{4578.19}{1 \times 16.50} = 277.5 \text{ psi}$$

$$f_{c\perp} = 277.5 \text{ psi} < F_{c\perp x}' = 650.00 \text{ psi } (\text{CSI} = 0.43) \text{ ? } \text{OK}$$

*Disclaimer: The calculations produced herein are for initial design and estimating purposes only. The calculations and drawings presented do not constitute a fully engineered design. All of the potential load cases required to fully design an actual structure may not be provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2012 Sec. R802.10.2 and designed according to the minimum requirements of ASCE 7-10. The beam calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.

Subject Beam Design	Customer	Location	Job No. 110 Whitman
Engr. Engineer Name	ENGINEERING COMPANY INC. Street Address City, CA 99999 ph. (800) 000-0000 www.website.com		This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc. Rev. - Page 6 Copyright © 2026
Date 1/29/2026			