

Beam Design

1. Beam Data

Load Type: Uniform Dist. Load
Support: Simple Beam
Beam Type: Sawn Lumber
Species: Douglas Fir-Larch
Grade: DF No.2

 Size:
 2 x 10

 Design Span (L):
 18.50 ft.

 Clear Span:
 18.25 ft.

 Total Span:
 18.75 ft.

 Bearing (lb):
 3 in.

 Quantity (N):
 1

2. Design Loads

Live Load: 100 plf
Dead Load: 75 plf
Selfweight: 61.0 lbs
Dist. Selfweight: 3.30 plf
Total Weight: 61.8 lbs

3. Design Options

Lateral Support: braced Defl. Limits: 360|240 Load Duration: 1.15 Exposure: dry $T \le 100^{\circ}F$ Temperature: Orientation: Vertical Incised Lumber: No Rep. Members: No

4. Design Assumptions and Notes

Code Standard: IBC 2015, NDS 2015 Bending Stress: Parallel to Grain

Notes:

5. Adjustment Factors

Factor	Description	Fb	Ft	$F_{\mathbf{v}}$	Fc	Fc⊥	E/E _{min}
C_{D}	Load Duration Factor	1.15	1.15	1.15	1.15	-	-
CM	Wet Service Factor	1 ^b	1	1	1 ^c	1	1
Ct	Temperature Factor	1	1	1	1	1	1
C_{L}	Beam Stability Factor	1	-	-	-	-	-
CF	Size Factor	1.1	1.1	-	1	-	-
Cfu	Flat Use Factor	1.2 ^d	_	-	_	-	_
Ci	Incising Factor	1	1	1	1	1	1
Cr	Repetitive Member Factor	1	-	-	-	-	-

- a) Adjustment factors per AWC NDS 2015 and NDS 2015 Supplement.
- b) When $(F_b)(C_F) \le 1,150 \text{ psi}$, $C_M = 1.0$.
- c) When $(F_c)(C_F) \le 750 \text{ psi}$, $C_M = 1.0$.
- d) Only applies when sawn lumber or glulam beams are loaded in bending about the y-y axis.

Subject	Customer	Location			Job No.
Beam Design					2024A370
Engineer Name	ENGINEERING CO	OMPANY INC.	STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.	Rev. –
8/26/2024	Street Address City, CA 999 ph. (800) 000-0000 www.w	99 vebsite.com	COMPANY LOGO	Copyright © 2024	Page 1

6. Beam Calculations

Determine reference design values, sectional properties and self weight of beam:

 $A = b \times d$

$$S_x = \frac{bd^2}{6}, \ S_y = \frac{b^2d}{6}$$

$$I_x = \frac{bd^3}{12}, \ I_y = \frac{b^3d}{12}$$

where:

b = Breadth of rectangular beam in bending (in.)

d = Depth of rectangular beam in bending (in.)

A = Cross sectional area of beam (in.²)

 S_X = Section modulus about the X-X axis (in.³)

 S_y = Section modulus about the Y-Y axis (in.³)

 I_X = Moment of inertia about the X-X axis (in. 4)

 $I_y = Moment of inertia about the Y-Y axis (in.⁴)$

b = 1.500 in.

d = 9.250 in.

$$A = 1.500 \text{ x } 9.250 = 13.88 \text{ in.}^2$$

$$S_x = (1.500)(9.250)^2/6 = 21.39 \text{ in.}^3$$

$$S_V = (1.500)^2 (9.250)/6 = 3.47 \text{ in.}^3$$

$$I_x = (1.500)(9.250)^3/12 = 98.93 \text{ in.}^4$$

$$I_v = (1.500)^3 (9.250)/12 = 2.60 \text{ in.}^4$$

Reference Design Values from Table 4A NDS Supplement (Reference Design Values for Visually Graded Dimension Lumber, 2" - 4" thick).

Species & Grade	Fb	Ft	$F_{\mathbf{v}}$	Fc⊥	Fc	Е	Emin	G
DF No.2	900	575	180	625	1350	1600000	580000	0.5

The following formula shall be used to determine the density of wood (lbs/ft³. (NDS Supplement Sec. 3.1.3)

$$\rho_w = 62.4 \left[\frac{G}{1 + G(0.009)(m.c)} \right] \left[1 + \frac{m.c.}{100} \right]$$

where:

 $\rho_{\rm W}$ = Density of wood (lbs/ft³

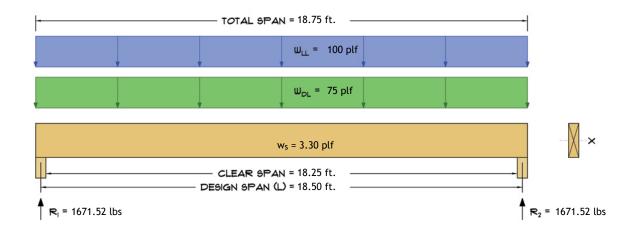
G = Specific gravity of wood (dimensionless)

m.c. = Moisture content of wood (percentile)

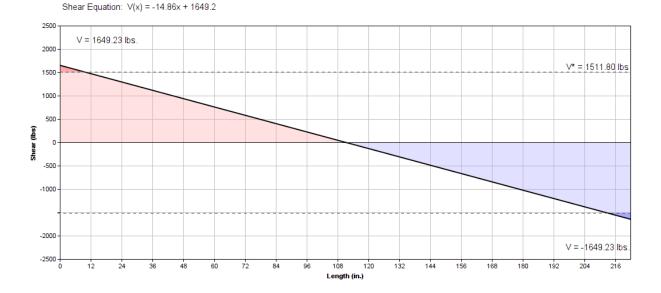
G = 0.5

m.c. = 19 % (Max. moisture content at dry service conditions)

Subject Beam Design	Customer	Location			Job No. 2024A370
Engineer Name	ENGINEERING CO	OMPANY INC.	STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of	Rev.
8/26/2024	Street Address City, CA 999 ph. (800) 000-0000 www.w	99 vebsite.com	COMPANY LOGO	Engineering Company Inc. Copyright © 2024	Page 2


$$\rho_w = 62.4 \left[\frac{0.5}{1 + 0.5(0.009)(19)} \right] \left[1 + \frac{19}{100} \right] = 34.20 \text{ lbs/ft}^3$$

 $\begin{aligned} & Volume_{total} = N[A \ x \ (L + l_b)] = 1 \ x \ [13.88 \ x \ (222.00 + 3)] \ x \ (12 \ in./ft.)^3 = 1.81 \ ft^3 \\ & Volume_{span} = N[A \ x \ L] = 1 \ x \ [13.88 \ x \ 222.00] \ x \ (12 \ in./ft.)^3 = 1.78 \ ft^3 \end{aligned}$


Total Weight (W_T) = ρ_W x Volume_{total} = 34.20 x 1.81 = 61.8 lbs Self Weight (W_S) = ρ_W x Volume_{span} = 34.20 x 1.78 = 61.0 lbs

Distributed Self Weight (w_s) =
$$\frac{W_S}{L} = \frac{61.0}{18.50}$$
 = 3.30 plf

Load, Shear and Moment Diagrams:

Beam - Shear Diagram

Beam Design	Customer	Eccation			2024A370
Engineer Name	ENGINEERING CO		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.	Rev.
8/26/2024	Street Address City, CA 9999 ph. (800) 000-0000 www.w	99 /ebsite.com	COMPANY LOGO	Copyright © 2024	Page 3

Beam - Moment Diagram

Moment Equation: $M(x) = -7.43x^2 + 1649.2x$

1.) Bending:

Members subject to bending stresses shall be proportioned so that the actual bending stress or moment shall not exceed the adjusted bending design value:

$$f_b \le F_b$$
' (NDS Sec. 3.3.1)

where:

$$f_b = M / S$$

$$F_b' = F_b(C_D)(C_M)(C_t)(C_L)(C_F)(C_i)(C_r)$$

Beam is braced laterally along its compression edge. Laterial stability is not a consideration:

 C_L = Beam Stability Factor = 1.0

$$F_{bx'} = (900)(1.15)(1)(1)(1)(1.1)(1)(1) = 1138.5 \text{ psi}$$

$$f_b = \frac{M}{N \times S_x} = \frac{91533}{1 \times 21.39} = 4279.1 \text{ psi}$$

$$f_b = 4279.1 \text{ psi} > F_{bx}' = 1138.5 \text{ psi (CSI} = 3.76)$$
 ? **NG**

Beam Design	Customer	Location			Job No. 2024A370
Engineer Name	ENGINEERING CO		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.	Rev.
8/26/2024	Street Address City, CA 9999 ph. (800) 000-0000 www.w	99 vebsite.com	COMPANY LOGO	Copyright © 2024	Page 4

2.) Shear:

Members subject to shear stresses shall be proportioned so that the actual shear stress parallel to grain or shear force at any cross section of the bending member shall not exceed the adjusted shear design value:

$$f_v \le F_{v'}$$
 (NDS Sec. 3.4.1)

where:

$$\mathbf{f_v} = \frac{3V}{2A}$$

$$F_{v'} = F_{v}(C_D)(C_M)(C_t)(C_i)$$

$$F_{vx'} = (180)(1.15)(1)(1)(1) = 207.00 \text{ psi}$$

Shear Reduction: For beams supported by full bearing on one surface and loads applied to the opposite surface, uniformly distributed loads within a distance, d, from supports equal to the depth of the bending member shall be pemitted to be ignored. For beams supported by full bearing on one surface and loads applied to the opposite surface, concentrated loads within a distance equal to the depth of the bending member from supports shall be permitted to be multiplied by x/d where x is the distance from the beam support face to the load. See NDS 2015, Figure 3C.

$$f_{v}* = \frac{3V^*}{2(N \times A)} = \frac{3(1511.80)}{2(1 \times 13.88)} = 163.44 \text{ psi}$$

$$f_v^* = 163.44 \text{ psi} < F_{vx'} = 207.00 \text{ psi (CSI} = 0.79)$$
 ? **OK**

No Reduction in Shear (conservative):

$$f_V = \frac{3V}{2(N \times A)} = \frac{3(1649.23)}{2(1 \times 13.88)} = 178.30 \text{ psi}$$

$$f_v = 178.30 \text{ psi} < F_{vx'} = 207.00 \text{ psi} \text{ (CSI} = 0.86)$$
 ? **OK**

3.) Deflection:

Bending deflections calculated per standard method of engineering mechanics for live load and total load:

LL Allowable: L/360 TL Allowable: L/240

$$E_{x'} = E_{x}(C_{M})(C_{t})(C_{i}) = 1600000(1)(1)(1) = 1600000 \text{ psi}$$

6.1.1					2 1 11
Subject	Customer	Location			Job No.
Beam Design					2024A370
Deam Design					2027A370
Engr.				This was to see a set by	Rev.
Engineen Nome	ENCINEEDING CO	CAADAAIV INIC		This report may not be copied, reproduced or	
Engineer Name	ENGINEERING CO	JMPANY INC.	STRUCTURAL ENGINEERS	distributed without the	-
			STROE	written consent of Engineering Company Inc.	
Date	Street Address City, CA 999	99	COMPANY LOGO	Engineering company Inc.	Page
9/26/2024	•		COMPANY LOGO		- 5
8/26/2024	ph. (800) 000-0000 www.w	vebsite.com			5
	, ,			Copyright © 2024	

$$\Delta_{\rm LL} = \frac{5w_{LL}L^4}{384E_x'(N\times I_x)} = \frac{5(100)(18.5)^4}{384(1600000)(1\times 98.93)} \times \left(12\frac{in.}{ft.}\right)^3 = 1.67 \ {\rm in}.$$

$$(L/d)_{LL} = 222.00 / 1.67 = 133$$

$$\Delta_{LL} = 1.67 \text{ in} = L/133 > L/360$$
 ? **NG**

$$\Delta_{\rm TL} = \frac{5(w_{TL} + w_s)L^4}{384 E_x'(N \times I_x)} = \frac{5(175 + 3.30)(18.5)^4}{384(1600000)(1 \times 98.93)} \times \left(12 \frac{in.}{ft.}\right)^3 = 2.97 \ {\rm in}.$$

$$(L/d)_{TL} = 222.00 / 2.97 = 75$$

$$\Delta_{TL} = 2.97 \text{ in} = L/75 > L/240$$
 ? **NG**

4.) Bearing:

Members subject to bearing stresses perpendicular to the grain shall be proportioned so that the actual compressive stress perpendicular to grain shall be based on the net bearing area and shall not exceed the adjusted compression design value perpendicular to grain:

$$f_{c\perp} \leq F_{c\perp}$$
' (NDS Sec. 3.10.2)

where:

$$f_{c\perp} = \frac{R}{A_b}$$

$$F_{c\perp}' = F_{c\perp}(C_M)(C_t)(C_i)$$

$$F_{c+x}' = (625)(1)(1)(1) = 625.00 \text{ psi}$$

$$A_b = b \times l_b = 1.5 \times 3 = 4.50 \text{ in}^2$$

$$\mathbf{f_{c\perp}} = \frac{R}{N \times A_b} = \frac{1671.52}{1 \times 4.50} = 371.4 \text{ psi}$$

$$f_{c\perp} = 371.4 \text{ psi} < F_{c\perp x'} = 625.00 \text{ psi} \text{ (CSI} = 0.59) ? OK$$

*Disclaimer: The calculations produced herein are for initial design and estimating purposes only. The calculations and drawings presented do not constitute a fully engineered design. All of the potential load cases required to fully design an actual structure may not be provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2012 Sec. R802.10.2 and designed according to the minimum requirements of ASCE 7-10. The beam calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.

Beam Design	Customer	Location			2024A370
Engineer Name	ENGINEERING CO		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.	Rev.
8/26/2024	Street Address City, CA 999 ph. (800) 000-0000 www.v	vebsite.com	COMPANY LOGO	Copyright © 2024	Page 6