Beam Design - Living Room Beam

1. Beam Data

Load Type:	Uniform Dist. Load
Support:	Simple Beam
Beam Type:	Sawn Lumber
Species:	Southern Pine
Grade:	SP SS
Size:	2 x 8
Design Span (L):	12.88 ft.
Clear Span:	12.75 ft.
Total Span:	13.00 ft.
Bearing (lb):	1.5 in.
Quantity (N):	2

2.	Desi	gn	Loads

Live Load:	127.5	plf
Dead Load:	0	plf
Selfweight:	72.6	lbs
Dist. Selfweight:	5.64	plf
Total Weight:	73.3	lbs

3. Design Options

Lateral Support:	braced
Defl. Limits:	240 180
Load Duration:	1.00
Exposure:	dry
Temperature:	$T \leq 100^{\circ}F$
Orientation:	Vertical
Incised Lumber:	No
Rep. Members:	No

4. Design Assumptions and Notes

Copyright © 2014

Code Standard: IBC 2015, NDS 2015 Bending Stress: Parallel to Grain Notes:

5. Adjustment Factors

	Factor	Description		Fb	Ft	Fv	Fc	F _{c⊥}	E/E _{min}	
	CD	Load Duration Factor		1.00	1.00	1.00	1.00	-	-	
	CM	Wet Service Factor		1 ^b	1	1	1 ^c	1	1	
	Ct	Temperature Factor		1	1	1	1	1	1	
	CL	Beam Stability Facto	r	1	-	-	-	-	-	
	C _F	Size Factor		1	1	-	1	-	-	
	C _{fu}	Flat Use Factor		1.15 ^d	-	-	-	-	-	
	Ci	Incising Factor		1	1	1	1	1	1	
	Cr	Repetitive Member Fac	etor	1	-	-	-	-	-	
	a) Adjus	tment factors per AWC NDS 2015 an	d NDS 2015 S	Suppleme	ent.					
	b) When	$(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0.$								
	c) When	$(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0.$								
	d) Only	applies when sawn lumber or glulam	beams are loa	ided in be	nding abou	t the y-y axi	s.			
	Beam Design	Harris, Morales, and Ray LLC	Location		17935 C	R 4142, T	roup, TX			Job No. HMR-001
	Engr. N. Wilkerson MEDEEK ENGINEERING INC. This report may not be copied, reproduced or distributed without the with the copied or distributed without the copied or distributed without the copied or distributed without the second or distributed without the copied or distributed without the						Rev. -			
Ī	Date 5/3/2023	A COSE O Charte Devicte 100 Occas Lie NMA 00505						Page 1		

6. Beam Calculations

Determine reference design values, sectional properties and self weight of beam:

$$A = b x d$$

$$S_x = \frac{bd^2}{6}, \ S_y = \frac{b^2d}{6}$$

 $I_x = \frac{bd^3}{12}, \ I_y = \frac{b^3d}{12}$

where:

b = Breadth of rectangular beam in bending (in.)

d = Depth of rectangular beam in bending (in.)

A = Cross sectional area of beam (in.²) S_x = Section modulus about the X-X axis (in.³) S_y = Section modulus about the Y-Y axis (in.³) I_x = Moment of inertia about the X-X axis (in.⁴) I_y = Moment of inertia about the Y-Y axis (in.⁴)

$$\begin{split} &b = 1.500 \text{ in.} \\ &d = 7.250 \text{ in.} \\ &A = 1.500 \text{ x } 7.250 = 10.88 \text{ in.}^2 \\ &S_x = (1.500)(7.250)^2/6 = 13.14 \text{ in.}^3 \\ &S_y = (1.500)^2(7.250)/6 = 2.72 \text{ in.}^3 \\ &I_x = (1.500)(7.250)^3/12 = 47.63 \text{ in.}^4 \\ &I_y = (1.500)^3(7.250)/12 = 2.04 \text{ in.}^4 \end{split}$$

Reference Design Values from Table 4B NDS Supplement (Reference Design Values for Visually Graded Southern Pine Dimension Lumber, 2" - 4" thick). Values per March 2013 Addendum

Species & Grade	Fb	Ft	F_{v}	$F_{c\perp}$	Fc	Е	Emin	G
SP SS	1950	1350	175	565	1700	1800000	660000	0.55

The following formula shall be used to determine the density of wood (lbs/ft³. (NDS Supplement Sec. 3.1.3)

$$\rho_w = 62.4 \left[\frac{G}{1 + G(0.009)(m.c)} \right] \left[1 + \frac{m.c.}{100} \right]$$

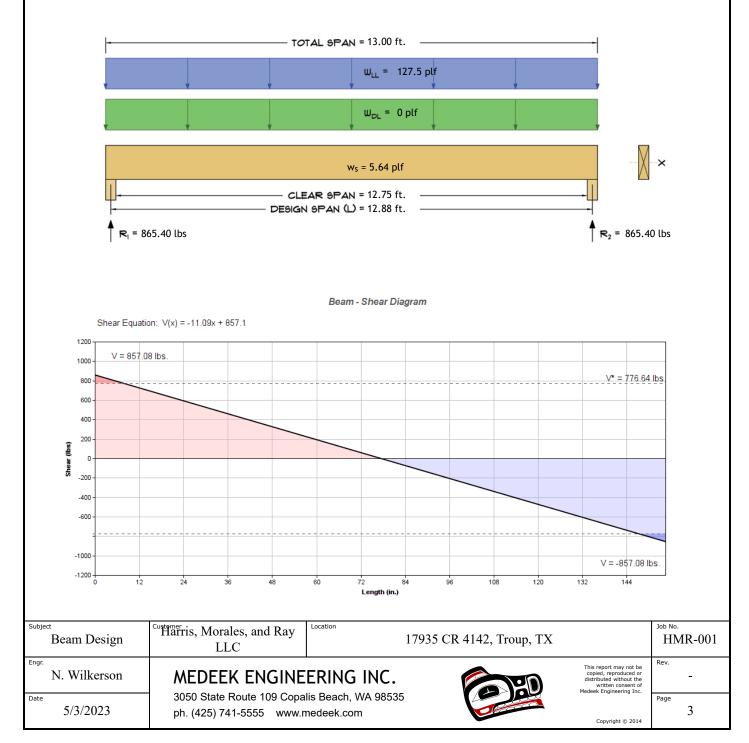
where:

$$\begin{split} \rho_w &= \text{Density of wood (lbs/ft}^3\\ G &= \text{Specific gravity of wood (dimensionless)}\\ \text{m.c.} &= \text{Moisture content of wood (percentile)} \end{split}$$

G = 0.55

 $m.c. = 19 \% \quad (\text{Max. moisture content at dry service conditions})$

Beam Design	^{Customer} tis, Morales, and Ray LLC	Location 17935 CR 4142, Troup, TX	Job No. HMR-001
^{Engr.} N. Wilkerson	MEDEEK ENGINEERING INC.		
Date 5/3/2023	3050 State Route 109 Copa ph. (425) 741-5555 www.r	Nis Beach, WA 98535 medeek.com	Page 2


$$\rho_w = 62.4 \left[\frac{0.55}{1 + 0.55(0.009)(19)} \right] \left[1 + \frac{19}{100} \right] = 37.33 \text{ lbs/ft}^3$$

 $\begin{aligned} \text{Volume}_{\text{total}} &= \text{N}[\text{A x } (\text{L} + \text{l}_{\text{b}})] = 2 \text{ x } [10.88 \text{ x } (154.50 + 1.5)] \text{ x } (12 \text{ in./ft.})^3 = 1.96 \text{ ft}^3 \\ \text{Volume}_{\text{span}} &= \text{N}[\text{A x } \text{L}] = 2 \text{ x } [10.88 \text{ x } 154.50] \text{ x } (12 \text{ in./ft.})^3 = 1.94 \text{ ft}^3 \end{aligned}$

Total Weight (W_T) = $\rho_W x$ Volume_{total} = 37.33 x 1.96 = 73.3 lbs Self Weight (W_S) = $\rho_W x$ Volume_{span} = 37.33 x 1.94 = 72.6 lbs

Distributed Self Weight (w_s) = $\frac{W_S}{L} = \frac{72.6}{12.88} = 5.64$ plf

Load, Shear and Moment Diagrams:

1.) Bending:

Members subject to bending stresses shall be proportioned so that the actual bending stress or moment shall not exceed the adjusted bending design value:

 $f_b \leq F_b' \ (\textit{NDS Sec. 3.3.1})$

where:

$$\label{eq:fb} \begin{split} f_b &= M \ / \ S \\ F_b' &= F_b(C_D)(C_M)(C_t)(C_L)(C_F)(C_i)(C_r) \end{split}$$

Beam is braced laterally along its compression edge. Laterial stability is not a consideration:

C_L = Beam Stability Factor = 1.0

 $F_{bx'} = (1950)(1.00)(1)(1)(1)(1)(1)(1)(1) = 1950.0 \text{ psi}$

 $\mathbf{f_b} = \frac{M}{N \times S_x} = \frac{33105}{2 \times 13.14} = 1259.6 \text{ psi}$

 $f_b = 1259.6 \; psi < F_{bx}' = 1950.0 \; psi \; (CSI = 0.65) \; ?$ OK

Subject Beam Design	^{Customer} is, Morales, and Ray LLC	Location 17935 CR 4142, Troup, TX	Job No. HMR-001
^{Engr.} N. Wilkerson	MEDEEK ENGINE	written consent of	Rev.
Date 5/3/2023	3050 State Route 109 Copa ph. (425) 741-5555 www.r	lis Beach, WA 98535	Page 4

2.) Shear:

Members subject to shear stresses shall be proportioned so that the actual shear stress parallel to grain or shear force at any cross section of the bending member shall not exceed the adjusted shear design value:

$$f_V \leq F_V'$$
 (NDS Sec. 3.4.1)

where:

$$\mathbf{f_v} = \frac{3V}{2A}$$

 $F_{v}' = F_{v}(C_{D})(C_{M})(C_{t})(C_{i})$

 $F_{vx}' = (175)(1.00)(1)(1)(1) = 175.00 \text{ psi}$

Shear Reduction: For beams supported by full bearing on one surface and loads applied to the opposite surface, uniformly distributed loads within a distance, d, from supports equal to the depth of the bending member shall be pemitted to be ignored. For beams supported by full bearing on one surface and loads applied to the opposite surface, concentrated loads within a distance equal to the depth of the bending member shall be permitted to be multiplied by x/d where x is the distance from the beam support face to the load. See NDS 2015, Figure 3C.

$$f_v * = \frac{3V^*}{2(N \times A)} = \frac{3(776.64)}{2(2 \times 10.88)} = 53.56 \text{ psi}$$

$$f_v^* = 53.56 \text{ psi} < F_{vx'} = 175.00 \text{ psi} (CSI = 0.31)$$
 ? OK

No Reduction in Shear (conservative):

$$\mathbf{f_v} \!=\! \frac{3V}{2(N \times A)} = \frac{3(857.08)}{2(2 \times 10.88)} \!= \mathbf{59.11} \; \mathbf{psi}$$

 $f_v = 59.11 \ psi < F_{vx'} = 175.00 \ psi \ (CSI = 0.34)$? **OK**

3.) Deflection:

Bending deflections calculated per standard method of engineering mechanics for live load and total load:

LL Allowable: L/240 TL Allowable: L/180

 $E_x' = E_x(C_M)(C_t)(C_i) = 1800000(1)(1)(1) = 1800000 \text{ psi}$

Subject	^{Customer} ris, Morales, and Ray	Location 17935 CR 4142, Troup, TX	Job No.
Beam Design	LLC		HMR-001
Engr.	MEDEEK ENGINE	written consent of	Rev.
N. Wilkerson		Modeak Engineering Inc.	–
Date 5/3/2023	3050 State Route 109 Copa ph. (425) 741-5555 www.r	lis Beach, WA 98535	Page 5

$$\Delta_{LL} = \frac{5w_{LL}L^4}{384E'_x(N \times I_x)} = \frac{5(127.5)(12.875)^4}{384(1800000)(2 \times 47.63)} \times \left(12\frac{in.}{ft.}\right)^3 = 0.46 \text{ in.}$$

$$(L/d)_{LL} = 154.50 / 0.46 = 336$$

$$\Delta_{LL} = 0.46 \text{ in} = L/336 < L/240 ? \text{OK}$$

$$\Delta_{TL} = \frac{5(w_{TL} + w_s)L^4}{384E'_x(N \times I_x)} = \frac{5(128 + 5.64)(12.875)^4}{384(1800000)(2 \times 47.63)} \times \left(12\frac{in.}{ft.}\right)^3 = 0.48 \text{ in.}$$

$$(L/d)_{TL} = 154.50 / 0.48 = 322$$

$$\Delta_{TL} = 0.48 \text{ in} = L/322 < L/180 ? \text{OK}$$

4.) Bearing:

Members subject to bearing stresses perpendicular to the grain shall be proportioned so that the actual compressive stress perpendicular to grain shall be based on the net bearing area and shall not exceed the adjusted compression design value perpendicular to grain:

 $f_{c\perp} \leq F_{c\perp}$ ' (NDS Sec. 3.10.2)

where:

$$\mathbf{f_{c\perp}} = \frac{R}{A_b}$$

 $F_{c\perp}' = F_{c\perp}(C_M)(C_t)(C_i)$

 $F_{c \perp x}' = (565)(1)(1)(1) = 565.00 \text{ psi}$

 $A_b = b x l_b = 1.5 x 1.5 = 2.25 in^2$

 ${f f_c}_\perp = rac{R}{N imes A_b} = rac{865.40}{2 imes 2.25} = 192.3 \; {
m psi}$

 $f_{c\,\perp} = 192.3 \; psi < F_{c\,\perp\,x'} = 565.00 \; psi \; (CSI = 0.34) \; ?$ OK

*Disclaimer: The calculations produced herein are for initial design and estimating purposes only. The calculations and drawings presented do not constitute a fully engineered design. All of the potential load cases required to fully design an actual structure may not be provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2012 Sec. R802.10.2 and designed according to the minimum requirements of ASCE 7-10. The beam calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.

Beam Design	^{Customer} is, Morales, and Ray LLC	Location 17935 CR 4142, Troup, TX		Job No. HMR-001
^{Engr.} N. Wilkerson	MEDEEK ENGINE		This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering Inc.	Rev. -
Date 5/3/2023	3050 State Route 109 Copa ph. (425) 741-5555 www.r	lis Beach, WA 98535 nedeek.com	Copyright © 2014	Page 6