Beam Design - Sutter Management

1. Beam Data

Load Type:	Uniform Dist. Load
Support:	Simple Beam
Beam Type:	Sawn Lumber
Species:	Douglas Fir-Larch
Grade:	DF SS
Size:	2 x 10
Design Span (L):	11.67 ft.
Clear Span:	11.33 ft.
Total Span:	12.00 ft.
Bearing (lb):	4 in.
Quantity (N):	3

2.	Desi	gn	Loads

Live Load:	352	plf
Dead Load:	80	plf
Selfweight:	115.4	lbs
Dist. Selfweight:	9.89	plf
Total Weight:	118.6	lbs

3. Design Options

Lateral Support:	braced
Defl. Limits:	360 240
Load Duration:	1.15
Exposure:	dry
Temperature:	$T \leq 100^{\circ}F$
Orientation:	Vertical
Incised Lumber:	No
	No

4. Design Assumptions and Notes

Code Standard: IBC 2015, NDS 2015 Bending Stress: Parallel to Grain Notes:

5. Adjustment Factors

	Fb	Ft	Fv	Fc	$F_{c\perp}$	E/E _{min}
Load Duration Factor	1.15	1.15	1.15	1.15	-	-
Wet Service Factor	1 ^b	1	1	1 ^c	1	1
Temperature Factor	1	1	1	1	1	1
Beam Stability Factor	1	-	-	-	-	-
Size Factor	1.1	1.1	-	1	-	-
Flat Use Factor	1.2 ^d	-	-	-	-	-
Incising Factor	1	1	1	1	1	1
Repetitive Member Factor	1	-	-	-	-	-
factors per AWC NDS 2015 and NDS 201	5 Supplem	ent.				
C_F) $\leq 1,150 \text{ psi}, C_M = 1.0.$						
C_F) \leq 750 psi, $C_M = 1.0$.						
(Temperature FactorBeam Stability FactorSize FactorFlat Use FactorIncising FactorRepetitive Member Factorfactors per AWC NDS 2015 and NDS 2017CF) $\leq 1,150$ psi, $C_M = 1.0$.CF) ≤ 750 psi, $C_M = 1.0$.	Wet Service Factor1Temperature Factor1Beam Stability Factor1Size Factor1.1Flat Use Factor1.2 ^d Incising Factor1Repetitive Member Factor1factors per AWC NDS 2015 and NDS 2015 Supplement $C_F) \le 1,150$ psi, $C_M = 1.0$. $C_F) \le 750$ psi, $C_M = 1.0$.	Temperature Factor11Temperature Factor11Beam Stability Factor1-Size Factor1.11.1Flat Use Factor1.2 ^d -Incising Factor11Repetitive Member Factor1-factors per AWC NDS 2015 and NDS 2015 Supplement.CF) \leq 1,150 psi, CM = 1.0.	Wet Service Factor111Temperature Factor111Beam Stability Factor1Size Factor1.11.1-Flat Use Factor 1.2^d Incising Factor111Repetitive Member Factor1factors per AWC NDS 2015 and NDS 2015 Supplement.CF) \leq 1,150 psi, CM = 1.0CF) \leq 750 psi, CM = 1.0	I I I I I I Temperature Factor 1 1 1 1 1 Beam Stability Factor 1 - - - Size Factor 1.1 1.1 - 1 Flat Use Factor 1.2 ^d - - - Incising Factor 1 1 1 1 Repetitive Member Factor 1 - - - factors per AWC NDS 2015 and NDS 2015 Supplement. CF) ≤ 1,150 psi, CM = 1.0. CF) ≤ 750 psi, CM = 1.0. -	Image: Net Service Factor Image:

Subject Beam Design	Clint Sutter	Location Kelvington	Job No. 2023A19
Engr. N. Wilkerson	MEDEEK ENGINE	written consent of	Rev. -
Date 2/1/2023	3050 State Route 109 Copa ph. (425) 741-5555 www.r	lis Beach, WA 98535	Page 1

6. Beam Calculations

Determine reference design values, sectional properties and self weight of beam:

$$A = b x d$$

$$S_x = \frac{bd^2}{6}, \ S_y = \frac{b^2d}{6}$$

 $I_x = \frac{bd^3}{12}, \ I_y = \frac{b^3d}{12}$

where:

b = Breadth of rectangular beam in bending (in.) d = Depth of rectangular beam in bending (in.) A = Cross sectional area of beam (in.²) S_x = Section modulus about the X-X axis (in.³) S_y = Section modulus about the Y-Y axis (in.³) I_x = Moment of inertia about the X-X axis (in.⁴) I_y = Moment of inertia about the Y-Y axis (in.⁴)

$$\begin{split} &b = 1.500 \text{ in.} \\ &d = 9.250 \text{ in.} \\ &A = 1.500 \text{ x } 9.250 = 13.88 \text{ in.}^2 \\ &S_x = (1.500)(9.250)^2/6 = 21.39 \text{ in.}^3 \\ &S_y = (1.500)^2(9.250)/6 = 3.47 \text{ in.}^3 \\ &I_x = (1.500)(9.250)^3/12 = 98.93 \text{ in.}^4 \\ &I_y = (1.500)^3(9.250)/12 = 2.60 \text{ in.}^4 \end{split}$$

Reference Design Values from Table 4A NDS Supplement (Reference Design Values for Visually Graded Dimension Lumber, 2" - 4" thick).

Species & Grad	e Fb	Ft	Fv	$F_{c\perp}$	Fc	E	Emin	G
DF SS	1500	1000	180	625	1700	1900000	690000	0.5

The following formula shall be used to determine the density of wood (lbs/ft³. (NDS Supplement Sec. 3.1.3)

$$\rho_w = 62.4 \left[\frac{G}{1 + G(0.009)(m.c)} \right] \left[1 + \frac{m.c.}{100} \right]$$

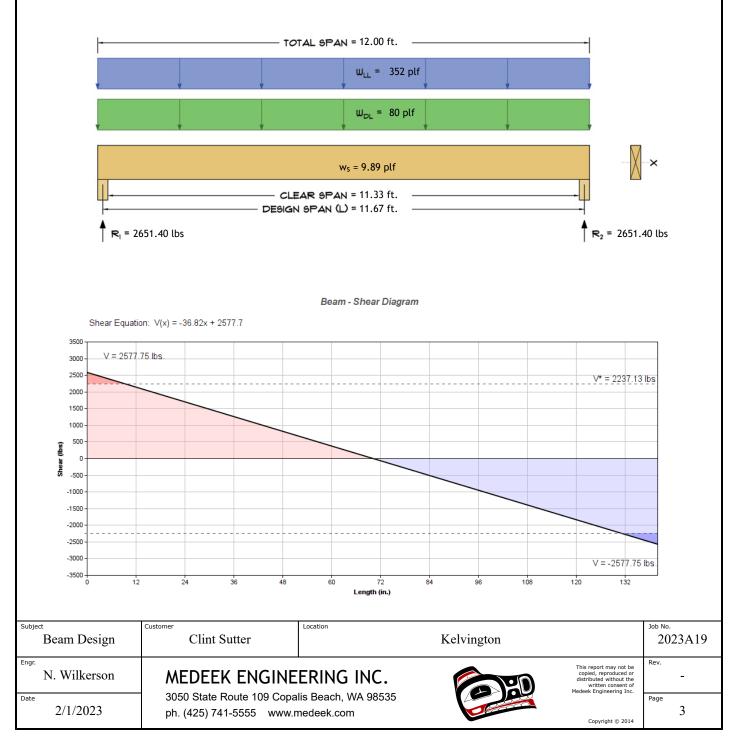
where:

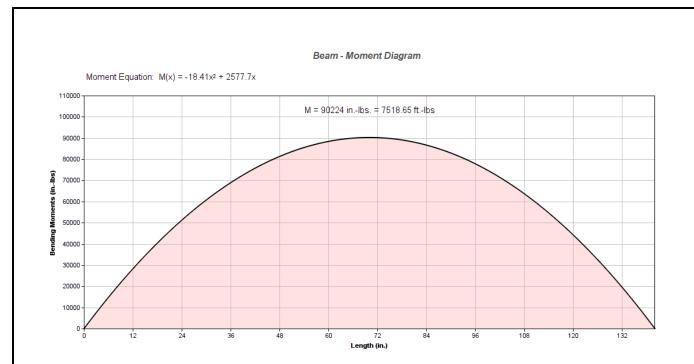
 ρ_W = Density of wood (lbs/ft³ G = Specific gravity of wood (dimensionless) m.c. = Moisture content of wood (percentile)

G = 0.5

m.c. = 19 % (Max. moisture content at dry service conditions)

Beam Design	Clint Sutter	Location Kelvington	Job No. 2023A19
^{Engr.} N. Wilkerson	MEDEEK ENGINE	Written consent of	Rev.
Date 2/1/2023	3050 State Route 109 Copa ph. (425) 741-5555 www.r	lis Beach, WA 98535	Page 2


$$\rho_w = 62.4 \left[\frac{0.5}{1 + 0.5(0.009)(19)} \right] \left[1 + \frac{19}{100} \right] = 34.20 \text{ lbs/ft}^3$$


 $\begin{aligned} \text{Volume}_{\text{total}} &= \text{N}[\text{A x } (\text{L} + \text{l}_{\text{b}})] = 3 \text{ x } [13.88 \text{ x } (140.00 + 4)] \text{ x } (12 \text{ in./ft.})^3 = 3.47 \text{ ft}^3 \\ \text{Volume}_{\text{span}} &= \text{N}[\text{A x } \text{L}] = 3 \text{ x } [13.88 \text{ x } 140.00] \text{ x } (12 \text{ in./ft.})^3 = 3.37 \text{ ft}^3 \end{aligned}$

Total Weight (W_T) = $\rho_W x$ Volume_{total} = 34.20 x 3.47 = 118.6 lbs Self Weight (W_S) = $\rho_W x$ Volume_{span} = 34.20 x 3.37 = 115.4 lbs

Distributed Self Weight (w_s) = $\frac{W_S}{L} = \frac{115.4}{11.67}$ = 9.89 plf

Load, Shear and Moment Diagrams:

1.) Bending:

Members subject to bending stresses shall be proportioned so that the actual bending stress or moment shall not exceed the adjusted bending design value:

 $f_b \leq F_b' \ (\textit{NDS Sec. 3.3.1})$

where:

$$\label{eq:fb} \begin{split} f_b &= M \ / \ S \\ F_b' &= F_b(C_D)(C_M)(C_t)(C_L)(C_F)(C_i)(C_r) \end{split}$$

Beam is braced laterally along its compression edge. Laterial stability is not a consideration:

 C_L = Beam Stability Factor = 1.0

 $F_{bx}' = (1500)(1.15)(1)(1)(1)(1)(1)(1)(1) = 1897.5 \text{ psi}$

$$f_{b} = \frac{M}{N \times S_{x}} = \frac{90224}{3 \times 21.39} = 1406.0 \text{ psi}$$

$$f_b = 1406.0 \text{ psi} < F_{bx'} = 1897.5 \text{ psi} (CSI = 0.74)$$
 ? **OK**

Subject Beam Design	Customer Clint Sutter	Location	Kelvington		Job No. 2023A19
Engr. N. Wilkerson	MEDEEK ENGINE			This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering Inc.	Rev. –
Date 2/1/2023	3050 State Route 109 Copa ph. (425) 741-5555 www.r			Copyright © 2014	Page 4

2.) Shear:

Members subject to shear stresses shall be proportioned so that the actual shear stress parallel to grain or shear force at any cross section of the bending member shall not exceed the adjusted shear design value:

$$f_V \leq F_V'$$
 (NDS Sec. 3.4.1)

where:

$$\mathbf{f_v} = \frac{3V}{2A}$$

 $F_{v}' = F_{v}(C_{D})(C_{M})(C_{t})(C_{i})$

$$F_{vx}' = (180)(1.15)(1)(1)(1) = 207.00 \text{ psi}$$

Shear Reduction: For beams supported by full bearing on one surface and loads applied to the opposite surface, uniformly distributed loads within a distance, d, from supports equal to the depth of the bending member shall be pemitted to be ignored. For beams supported by full bearing on one surface and loads applied to the opposite surface, concentrated loads within a distance equal to the depth of the bending member shall be permitted to be multiplied by x/d where x is the distance from the beam support face to the load. See NDS 2015, Figure 3C.

$$\mathbf{f_V}^{*} = \frac{3V^{*}}{2(N \times A)} = \frac{3(2237.13)}{2(3 \times 13.88)} = 80.62 \text{ psi}$$

$$f_v^* = 80.62 \text{ psi} < F_{vx'} = 207.00 \text{ psi} (CSI = 0.39)$$
 ? OK

No Reduction in Shear (conservative):

$$\mathbf{f_v} \!=\! \frac{3V}{2(N \times A)} = \frac{3(2577.75)}{2(3 \times 13.88)} \!= \! \mathbf{92.89} \; \mathbf{psi}$$

 $f_v = 92.89 \; psi < F_{vx}' = 207.00 \; psi \; (CSI = 0.45) \; ?$ OK

3.) Deflection:

Bending deflections calculated per standard method of engineering mechanics for live load and total load:

LL Allowable: L/360 TL Allowable: L/240

 $E_x' = E_x(C_M)(C_t)(C_i) = 1900000(1)(1)(1) = 1900000 \text{ psi}$

Beam Design	Customer Clint Sutter	Location Kelvington	Job No. 2023A19
^{Engr.} N. Wilkerson	MEDEEK ENGINE	written consent	r — f
Date 2/1/2023	3050 State Route 109 Copa ph. (425) 741-5555 www.r	lis Beach, WA 98535	Page 5

$$\begin{split} \Delta_{\text{LL}} &= \frac{5w_{LL}L^4}{384E'_x(N \times I_x)} = \frac{5(352)(11.667)^4}{384(1900000)(3 \times 98.93)} \times \left(12\frac{in.}{ft.}\right)^3 = 0.26 \text{ in.} \\ (\text{L/d})_{\text{LL}} &= 140.00 / 0.26 = 538 \\ \Delta_{\text{LL}} &= 0.26 \text{ in} = \text{L}/538 < \text{L}/360 \ ? \text{OK} \\ \Delta_{\text{TL}} &= \frac{5(w_{TL} + w_s)L^4}{384E'_x(N \times I_x)} = \frac{5(432 + 9.89)(11.667)^4}{384(1900000)(3 \times 98.93)} \times \left(12\frac{in.}{ft.}\right)^3 = 0.33 \text{ in.} \\ (\text{L/d})_{\text{TL}} &= 140.00 / 0.33 = 429 \\ \Delta_{\text{TL}} &= 0.33 \text{ in} = \text{L}/429 < \text{L}/240 \ ? \text{OK} \end{split}$$

4.) Bearing:

Members subject to bearing stresses perpendicular to the grain shall be proportioned so that the actual compressive stress perpendicular to grain shall be based on the net bearing area and shall not exceed the adjusted compression design value perpendicular to grain:

 $f_{c\perp} \leq F_{c\perp}$ ' (NDS Sec. 3.10.2)

where:

$$\mathbf{f_{c\perp}} = \frac{R}{A_b}$$

 $F_{c\perp}' = F_{c\perp}(C_M)(C_t)(C_i)$

 $F_{c \perp x}' = (625)(1)(1)(1) = 625.00 \text{ psi}$

$$A_b = b x l_b = 1.5 x 4 = 6.00 in^2$$

 $f_{c\perp} = \frac{R}{N \times A_b} = \frac{2651.40}{3 \times 6.00} = 147.3 \text{ psi}$

 $f_{c\,\perp} = 147.3 \; psi < F_{c\,\perp\,x'} = 625.00 \; psi \; (CSI = 0.24) \; ?$ OK

*Disclaimer: The calculations produced herein are for initial design and estimating purposes only. The calculations and drawings presented do not constitute a fully engineered design. All of the potential load cases required to fully design an actual structure may not be provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2012 Sec. R802.10.2 and designed according to the minimum requirements of ASCE 7-10. The beam calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.

Subject	Customer	Location	Job No.
Beam Design	Clint Sutter	Kelvington	2023A19
Engr. N. Wilkerson	MEDEEK ENGINE	written consent of	Rev. _
Date 2/1/2023	3050 State Route 109 Copa ph. (425) 741-5555 www.r	lis Beach, WA 98535 nedeek.com	Page 6