

MEDEEK ENGINEERING INC.

3050 State Route 109 Copalis Beach, WA 98535 Phone: 425-741-5555 Email: nathan@medeek.com

ENGINEERING REPORT

STRUCTURAL REVIEW

July 8, 2014

JOB NUMBER:

2014-002

PLAN NUMBER: _____ PORCH1917

CUSTOMER: CASEY A. DOYLE

LOCATION: 24 BENNETT LANE OAKVILLE, WA 98568

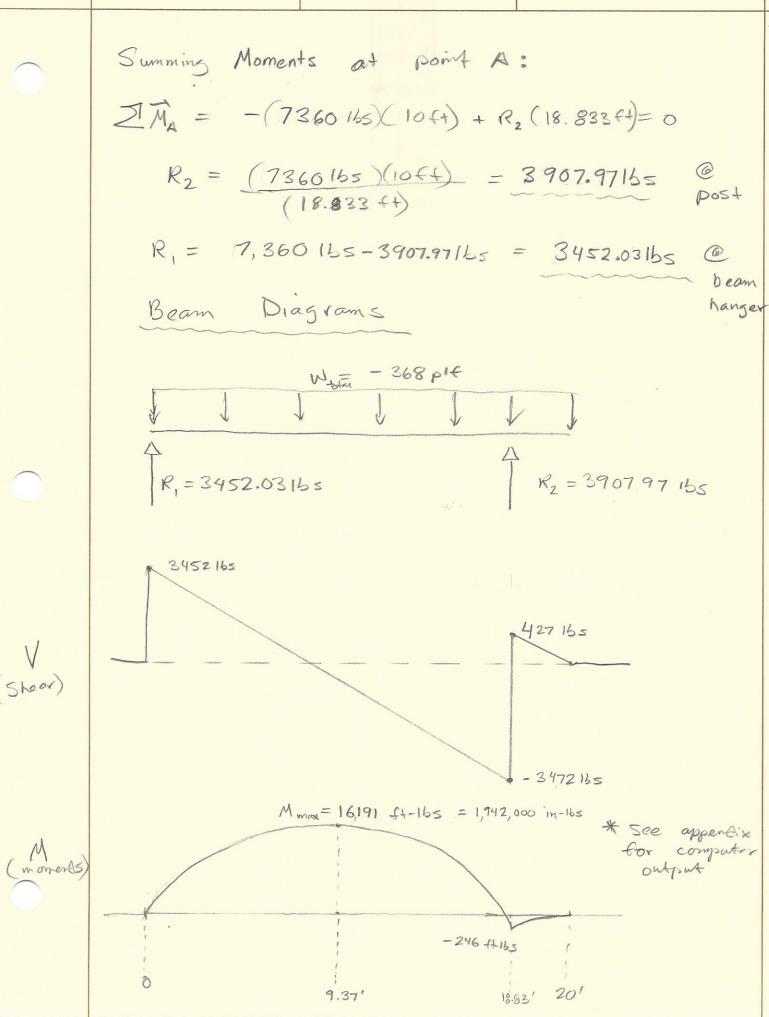
Engineer's seal applies to this entire calculation packet. This packet is void if engineer's seal is not an original and signature is not signed in blue ink.

Engineer: Nathaniel P. Wilkerson

This engineering report is valid only for the building located at 24 Bennett Lane Oakville, WA 98568. This report is to be used only once and may not be copied, reproduced or distributed without the written consent of Medeek Engineering Inc.

ENGINEERING REPORT: STRUCTURAL REVIEW

Customer:Casey A. DoyleLocation:24 Bennett Lane Oakville, WA 98568Engr:Nathaniel P. WilkersonDate:8-Jul-14


CODES

ICC International Building Code IBC2012 Minimum Design Loads for Buildings ASCE7-10 American Concrete Institute ACI 318-11 AWC NDS 2012

DESIGN CRITERIA SUMMARY

Wind Speed (ultimate)	130.0 MPH
Terrain Exp. Category	С
Wind Risk Category	II
Roof Live Load	20.0 PSF
Roof Dead Load	15.0 PSF
Seismic Design Category	D
Site Class	D Stiff Soil
Ground Snow Load	25.0 PSF
Frost Line Depth	12.0 IN
Occupancy Classification	R
Risk Category	2.0
Snow Importance Factor	1.0 PSF
Wind Factor in Load Combinations	0.6
Seismic Importance Factor	1.0
Construction Type	V-B
Soil Bearing Capacity	1500.0 PSF
SDS	0.977 ~
	0.877 g
SD1	0.585 g
Roof Eve Height	9.000 FT
Peak Roof Height	12.333 FT
Mean Roof Height	10.667 FT
Latitude	46.8651
Longitude	-123.2897
Longitude	
Elevation:	70.0 FT

1) July 7, 2014 Nathaniel P. Wilkerson Medech Engineering Vertical Loads Roof Plan to disregard section 201 framed over house assume those loads carried by main structure Gabk Roof A1001 = 400 sqft. 20' From ASD Load Combinations: 3. D+5 (governing load combination) From Snow Load Calculator (per ASCE 7-10) balanced snow load is: TOTAL LOAD = D+S = 15.8psf + 21.0psf = 36.8psf VERTICAL = 36.8psf × root area = 36.8psf × 400 sqf4 = 14,720 165 1) Check Glulam Beam Assume each beam supports half of roof $L_{beam} = \frac{14,72016s}{2}$ load (distributed). K * * * * * * * * * = 7,360 lbs 10. AA = 7360165 = 368 plfTR. 20 ft K _ L = 20A ____ R2 A >

$$\begin{split} \hline & G | Nem : \\ &= G | u | a_{M} & Boam = 3 \frac{1}{2} \times 12 24F - V4 DF/DF \\ &= Corp (e S Sin F dge of beam is braced with values to prevent labered buckling \\ &= Section Properties per APA (Form No. FWS S4758) \\ & Beam Weight = 10.2 1b/64 \\ & Area = 412 in 2 \\ &= S = 84 in 3 \\ &= 1,800,000 psi \\ &= 504 in 4 \\ & F_{V} = 265 psi \\ &= 1 = 907.2 \times 10^{6} 1b - 1n^{2} \\ & C_{0} = 1.15 (snow loads) \\ & Monund Cay. = 16,800 - ft - 1b \\ & Sheer Cap. = 7420 lbs \\ & Hen: \\ & C_{V} = (21)^{1/2} (\frac{112}{d})^{1/2} \times (\frac{5.125}{b})^{-1} = (\frac{21}{18.82})^{1/2} \times (\frac{5.125}{3.5})^{-1} \\ & C_{V} = 1.05 \quad s^{*} \quad C_{V} = 1.0 \\ & 0 \quad Fb = F_{b}(C_{b}) (C_{M}) (C_{c}) (C_{V}) \\ &= (2400 psi) (1.15) (1) (1) (1.0) \\ &= 2760 psi \\ & f_{v} = \frac{M}{5} \times (\frac{W_{whith}}{W_{total}}) = \frac{17.942,000 in 45}{841 n^{2}} \times [\frac{568 + 10.2}{269}] \\ & f_{v} = 2377 psi \\ & C = 2377 psi \\ \end{bmatrix}$$

(i)
$$F_{VX} = F_V (C_b)(C_M)(C_t)$$

 $= (265 psi)(4:15)(1)(1)$
 $= 304.8 psi$
Ignore reduction on shear given by V^* (conservative):
 $F_V = \frac{15}{A} = \frac{(1.5)(3472.165)}{42 in2}$
 $f_V = 124 psi$
 $F_V = 124 psi$ $< F_{VX} = 304.8 psi \longrightarrow OK$
(ii)
For deflection assume (conservative) swilly synported
baam:
 $E'_X = E_X(C_M)(C_t) = 1.8agaab(1)(1) = 1.800 acc psi$
 $\Delta TL = \frac{S(W_{rotact} + W_{baam}) L^9}{284 E'T}$
 $\Delta_{TL} = \frac{(S)(268.p16 + 10.2p14)(18.822.64)^4}{(384)(1800 000 \frac{165}{1102})(504 1m^4)} \times {\binom{12}{4}}^2$
 $\Delta_{TL} = 1.18 in$
 $(L/d)_{TL} = \frac{L}{A_{TL}} = \frac{18.822.64}{1.18 in} \times {\binom{12m}{14}} = 191$
 $\frac{L}{191} < \frac{L}{180} \longrightarrow OK$

$$M_{By} proportion:$$

$$\Delta_{LL} = \frac{S}{W_{bith}} \Delta_{TL} = \left(\frac{210 \text{ p16}}{368 \text{ p14} + 162 \text{ p16}}\right)^{1.15 \text{ in}} = .65 \text{ in}$$

$$\left(\frac{L}{d}\right)_{LL} = \frac{L}{\Delta_{LL}} = \frac{18.325 \text{ f4}}{.65 \text{ in}} \times \left(\frac{12 \text{ in}}{4 \text{ f4}}\right) = .345$$

$$\frac{L}{345} < \frac{L}{240} \longrightarrow OK$$
N) Bearing: (Check learning at Beam Hamper)
From NDS Table 5A Fer = 650 pSi
F'er = 650 pSi (CM(C_{+})(C_{b}))
$$= 650 \text{ pSi}$$

$$R = R_{1} + \left(\frac{W_{beam} - L_{bran}}{2}\right) = .3452165 + \frac{(02 \text{ p4})(1853 \text{ f4})}{2}$$

$$R = 3548 \text{ Hs}$$

$$Req. A = \frac{R}{F_{c1}} = \frac{3548165}{650 \text{ pSi}} = 5.45 \text{ in}^{2}.$$

$$A_{hanger} = 2.5 \text{ in} \times 3.5 \text{ in} = 8.75 \text{ in}^{2}$$

$$A_{hanger} = 8.75 \text{ in}^{2} > Req. A = 5.45 \text{ in}^{2} \longrightarrow OK$$

2) Chech
$$6 \times 6$$
 Post
Load on post is R_2 and half the weight
of Glulam beam:
 $P = R_2 + \frac{W_{brain} + brain}{2}$
 $= 3907.91bs + (16.2pff)(16.83.ft)$
 $= 4004.165$
Free Body Diagram of Post:
 $C_F = 1.0$ for compression
of posts it timbers
 $e=944$
 $assume pin jointee at top and
bottom (conservative)
 $d_x = 5.5^{a}$
 $T = 4004.165$
 $A = .80.25in^{2}$
 $d_y = 5.5^{a}$
Values from NDS Table 4D:
Assume Post is DF No.1
 $F_c = 1000psi$
 $Emin = 580,000psi$
 $(\frac{Le}{d_{Max}} = \frac{1.0(944 \times 12\frac{La}{24})}{5.5 m} = 19.64$$

$$F_{min} = F_{min} C_{M} C_{\ell} C_{i}$$

$$= 550000 \text{ psi} (1)(1/y)$$

$$= 580,000 \text{ psi}$$

$$C = 0.8 \quad \text{fer} \quad \text{Sawn} \quad \text{humber columns}$$

$$F_{eE} = \frac{.822}{(le_{d})^{2}} = \frac{.322}{(10.64)^{2}} = 1236.4 \text{ psi}$$

$$F_{e}^{*} = F_{e} (C_{b})(C_{A})(C_{T})(C_{F})(C_{i})$$

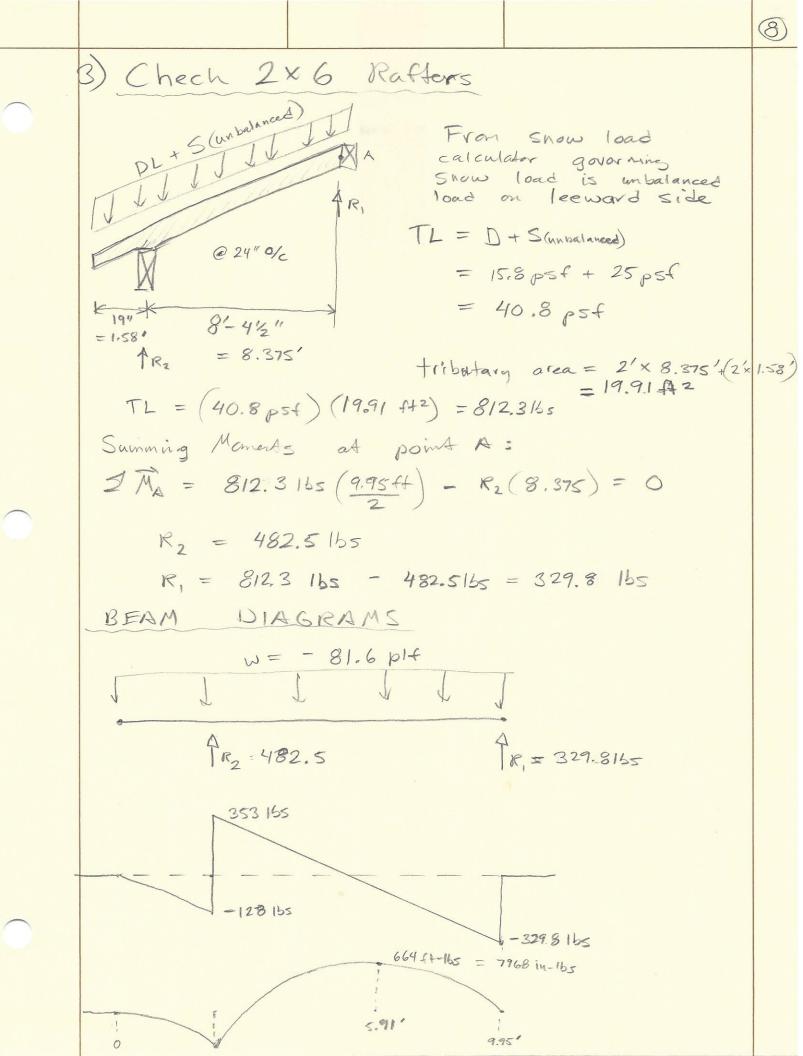
$$= 1000 \text{ psi} (\text{le})(1)(1)(1)(1) = 1150 \text{ psi}$$

$$F_{e}^{*} = \frac{.1236.4 \text{ psi}}{1000 \text{ psi}} = 1.075$$

$$F_{e}^{*} = \frac{.1236.4 \text{ psi}}{.2 \text{ c}} = \frac{.1 + 1.226}{.2 \text{ (8)}} = 1.297$$

$$C_{p} = \frac{.1 + F_{e}F_{e}^{*}}{.2 \text{ c}} = \sqrt{\left[\frac{.1 + F_{e}/F_{e}^{*}}{.2 \text{ c}}\right]^{2}} - \frac{F_{e}E/F_{e}^{*}}{.8}$$

$$= .715$$


$$F_{e}' = F_{e} (C_{p})(C_{m})(c_{e})(C_{p})(c_{i})$$

$$= 1000 \text{ psi} (1.15) (1Y1X1)(.715)(1)$$

$$F_{e}' = 822 \text{ psi}$$

$$f_{e} = \frac{P}{A_{g}} = \frac{4004}{.30.25 \text{ in}^{2}} = 132.4 \text{ psi}$$

$$f_{e} = 132.4 \text{ psi} < F_{e}' = 822 \text{ psi}$$

Given is 2×6 Rafter [AF No. 2]

$$A = 8.25 \text{ in }^{2} \qquad \text{From NDS Table 4A}:$$

$$S = 7.56 \text{ in }^{2} \qquad \text{F} = 1300000}$$

$$F_{b} = 850 \text{ psi} \qquad C_{F} = 1.2$$

$$F_{V} = 150 \text{ psi} \qquad C_{R} = 1.15 \qquad (\text{repetitive weather increase})$$

$$F_{c1} = 405 \text{ psi} \qquad C_{0} = 1.15 \qquad (\text{repetitive weather increase})$$
i)
$$F_{5}' = F_{b} C_{b} C_{A} C_{c} C_{c} C_{c} C_{c} \qquad T = 20.74 \text{ in } 4$$

$$= 850 (115)(1)(1)(1)(13)(15)(1)$$

$$= 1461.41 \text{ psi}$$

$$f_{b} = 1053.9 \text{ psi} < F_{b}' = 1461.4 \text{ psi} \qquad OK$$
II) Ignore shear reduction given by $N^{-\frac{1}{2}}$:
$$F_{V}' = F_{V} C_{b} C_{A} C_{c} C_{i}$$

$$= 150 \text{ psi} (1.15)(1)(1)(1)(1)$$

$$= 172.5 \text{ psi}$$

$$f_{v} = \frac{1.5V}{A} = \frac{1.5(353 \text{ Hs})}{8.25 \text{ in}^{2}} = 64.2 \text{ psi}$$

$$f_{v} = 64.2 \text{ psi} < 172.5 \text{ psi} = F_{v} \qquad OK$$
III) For deflection assume simply supported
becam between bearing points (conservative)

$$F' = F' C_{A} C_{c} C_{i}$$

$$= 130000 \text{ psi} (1)(1)(1)$$

$$\begin{split} \Delta_{TL} &= \underbrace{S \ WL^{q}}_{284} EI \\ &= \underbrace{S \ (81.6 \ W_{4+}) \ (8.375 \ GA)}_{384 \ (12 \ in)}^{3} \times \left(12 \ in)^{3}}_{384 \ (1300 \ 020) \ (20.79 \ in)^{q}} \times \left(12 \ in)^{3}}_{4+} \right)^{3} \\ \Delta_{TL} &= .334 \ in \\ (U_{4})_{TL} &= \underbrace{L}_{\Delta_{TL}} &= \underbrace{8.375 \ in}_{.234 \ in} \times \left(\frac{12}{4+}\right) = 300 \\ U_{200} \ < \ U_{180} \longrightarrow O \ K \\ W_{200} \ < \ U_{180} \longrightarrow O \ K \\ W_{10}B_{Y} \ proportion : \\ \Delta_{LL} &= \underbrace{S}_{W_{104m}} \ \Delta_{TL} = \left(\frac{50}{81.6}\right) \cdot 324 \ = .204 \ in \\ (U_{6})_{LL} \ = \ \underbrace{L}_{\Delta_{LL}} = \underbrace{\frac{8.375 \ in}{.204 \ in} \times \left(\frac{12 \ in}{6+}\right) = 491 \\ U_{491} \ < \ U_{290} \longrightarrow O \ K \\ W \ Bearing \ Chech \ (@ birds \ mouth \ cut \ on \ glutam) \\ F_{CL}^{\prime} = F_{CL} \ C_{M}C_{+} \ C_{b} = .495 \ psi \ (1) \ (1) \ (1) \\ F_{CL}^{\prime} = 405 \ psi \\ R = R_{2} = .482 \cdot S \ ILS \\ R_{eq} \ A = \frac{R}{F_{C1}^{\prime}} = \frac{482 \cdot S \ ILS}{405 \ psi} = 1.19 \ in 2 \\ A_{cut} = 5.25 \ in 2 \ Reg \ A = 1.19 \ in 2 \longrightarrow O \ K \\ \end{split}$$

10)

B. Lateral Loads
Basic Wind Speed = 135 mph
Structure qualifies as an geen building with
While Rish Cat. = 2
Exposure = C
Fave Height
$$\approx$$
 9ft.
 $G_{pe} = 0.0$ from Table 26.11 1 ASCE 7-10
We
 $k = 10.61 - 4$
 $k = 10.67$ ft
For NWFRS :
 $q_n = .06256$ K_h K₂₁ K_D V²
Where : K₂₂ = 1.0 for borogeneous terrain
 $K_n = .85$ (table 27.2-1 ASCE 7-10)
 $V = 120$ mph
 $K_p = .85$ for buildings
 $q_n = .00256$ (.85) (1.0) (.85) (120)²
 $q_n = .31.25$ psf

for apon buildings Sec. 27.4.3 from ASCETTO

$$p = 9_h G C_N$$

where: $G = .85$ (just affect factor)
 $g_n = Velocity pressure at when rade height
 $p = 31.25 psf \times .85 \times C_N$
Inview interpolations values from Fig. 27.4-5:
and considering $8 = 0^\circ$ as governing load case:
Rod Angle & C. Conv. Cont.
 $\boxed{\phi = 18.43^\circ A 1.1 - 7.171}_{B coog - .963}$
Case A:
 $\frac{29.24}{D - 1.95}$
 $CASE B: 24 pot $\frac{25.6}{D - 25}$$$

then maximum lateral force is silven by Case A: Shear = (29.2 + 4.5) por (20ft × 3.33ft) = 2274,42 165 For ASD use . GW : ShearASD = (2244.42165)(.6) = 1346 165 Assume that wind force acts on centroid of roof surface and posts do not contribute any support for racking, then twisting of structure is prevented by Julian beams anchored to walls (neglect contributions by roof sheathing). "FBD of Shear Resistance" RBy RAV B + RBX Wind Force = 1346165 8.5 ft 8.5 ft Summing moments about A:

13)

3) Check Uplift an Kafters:
the max uplift is given an leewood side
Q CASE B
We conservatively ignore dead lad weight of
asphalt sningles, sheathing (SB) and 2×6 rafter
than:
Fuplifies = (Atrib × 25.6 psf).6
where: Atrib =
$$\frac{W}{\cos \phi}(2ft) = \frac{(16ft)(2ft)}{\cos 1843} = 21.08ft^2$$

Fuplifit = 323.8 lbs
 $2IMA = 323.81ks(\frac{104t}{2}) - U_2(8.375) = 0$
 $U_2 = 193.3 lbs$
 $U_1 = 323.81bs - 193.31b = 150 lbs$
For LSO 26 Hanger:
 $U_1 = 120 lbs < 415 lbs > 0k$
Checking Snow load for LSU26 hanger:
 $R_1 = 329.81b < 695 lbs > 0k$
For H1 Tie : (uplift only)
 $U_2 = 193.31bs < 400 lbs > 0k$

C.) Concrete and Post Auchor
D.Chech bearing pressure, assume Soil barring
capacity of 1500 pst
from page 6:

$$P = 40041bs$$
 (snow land governs)
Reg. Soil Barring = $\frac{P}{A_{\text{footing}}}$
 R_{ag} . Soil Barring = $\frac{40041bs}{4442}$ Atalting = 442
Reg. Soil Keeling = $\frac{40041bs}{4442}$ Atalting = 442
Reg. Soil Barring = $\frac{1001}{954}$ (stoppst = $90K$
2) Check ABU 66 capacity:
 $P = 40041bs < 120001bs \implies 0K$
3) Check ABU 66 uplift:
from wind calculations the max uplift is
given by CASEB on lecturdside.
Assume post an leaverd side takes half
the lecturd side uplift (conservative).
Puplift = $-(61) + .6W$
where $D = (\frac{15.8}{36.8}) R_2 = (\frac{15.9}{36.2}) 2907.91bs = 1677.81bs$
 $W = (25.6pst)(1061)(1061) = 25601bs$
Puplift = $-.6(1677.8) + .6(2560) = 529165$
Puplift = $-.6(1677.8) + .6(2560) = 529165$

Snow Load Report

1. Roof and Building Data

Ground Snow Load (Pg):	25.0 psf
Roof Pitch:	4 /12
Risk Category:	II
Eave-to-Ridge (W):	10 ft.
Terrain Category:	С
Exposure:	Partially Exposed
Thermal Factor (Ct):	1.20
Roof Surface:	Asphalt Shingles
Roof System:	rafter
Spacing:	24 in. o/c
Overhang:	16 in.

2. Design Loads

Top Chord Dead Load:15psfBottom Chord Dead Load:0psfSF (Slope Factor) = 1/Cosine(Φ) = 1.05 (Dead loads specified on a projected horizontal basis take into account the effect of the pitch via a slope factor.)Adj. TCDL (TCDL x SF):15.8psf

3. Design Assumptions

Code Standard:ASCE 7-10Number of Plies:1 PLYBottom Chord Pitch:0 /12

4. Snow Load Calculations

Calculate flat roof snow load p_f using the following equation:

 $p_f = 0.7C_eC_tI_sp_g$

where:

 $\begin{array}{l} p_{f} = Flat \ Roof \ Snow \ Load \ in \ psf \\ C_{e} = 1.00 = Exposure \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 7-2 \ (Terrain \ Cat. \ C, \ Exp. \ Partially \ Exposed) \\ C_{t} = 1.20 = Thermal \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 7-3 \\ I_{s} = 1.00 = Importance \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 1.5-2 \ (Risk \ Cat. \ II) \\ p_{g} = 25.0 \ psf = Ground \ Snow \ Load \ in \ psf \end{array}$

 $p_f = 0.7C_eC_tI_sp_g = 0.7(1.00)(1.20)(1.00)(25.0) = 21.0 \text{ psf}$

Subject Snow Loads	Customer Casey Doyle	Location 24 Bennet Lane Oakville, WA 98568	^{Job No.} 2014А53
N. Wilkerson		INEERING INC.	Rev
Date 7/7/2014	3050 State Route 109 Cop ph. (425) 741-5555 www	balis Beach, WA 98535	Page 1

A minimum roof snow load, pm shall apply to monoslope, hip and gable roofs with slopes less than 15 degrees using the following equations:

Where p_g is 20 psf or less: $p_m=I_sp_g$ Where p_g exceeds 20 psf: $p_m=I_s(20)$

Roof slope is greater than 15 degrees, the minimum roof snow load, pm, does not apply.

For locations where p_g is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall included a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

Roof slope in degrees (18.43°) is greater than W/50 = 0.2, the 5.0 psf rain-on-snow surcharge load does not apply.

Calculate sloped roof snow load ps using the following equation:

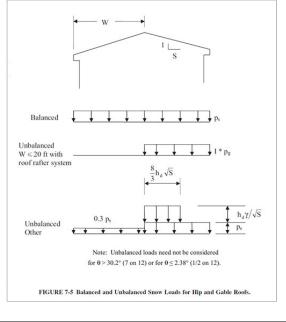
 $p_s = C_s p_f$

where:

 p_s = Sloped Roof Snow Load in psf C_s = 1.00 = Roof Slope Factor, as determined by ASCE 7-10 Sec. 7.4.1-7.4.4 and Figure 7-2 p_f = Flat Roof Snow Load in psf

Roof surface (Asphalt Shingles) is considered a "non-slippery" roof. For a $C_t = 1.20$ the roof slope factor C_s is given by the solid line of ASCE 7-10 Figure 7-2c.

 $p_s = C_s p_f = (1.00)(21.0) = 21.0 \text{ psf}$

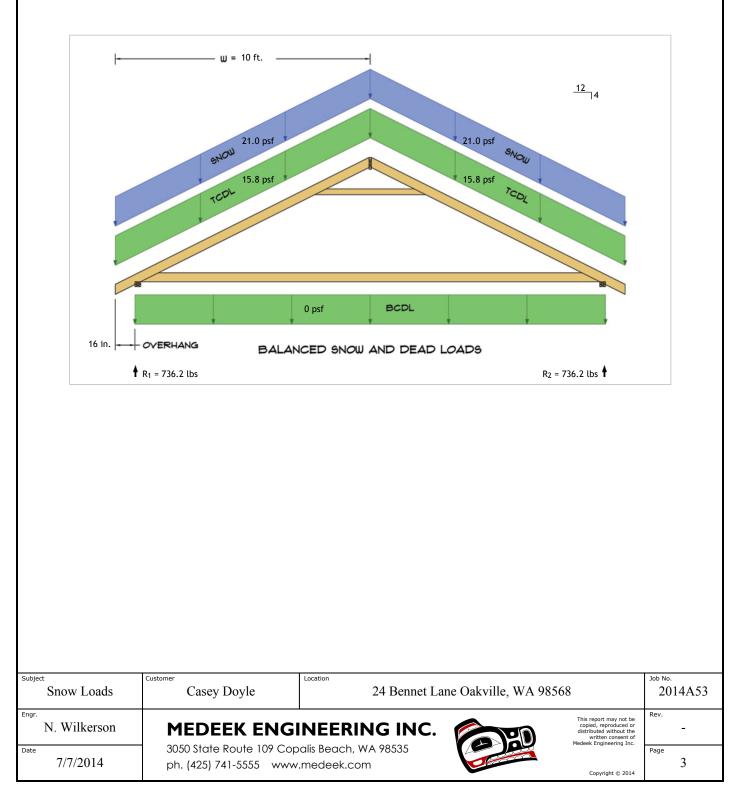

Calculate unbalanced snow load for hip and gable roofs as shown in ASCE 7-10 Figure 7-5. Unbalanced snow loads are required for roof pitches between 1/2 on 12 to 7 on 12. Using the following equations:

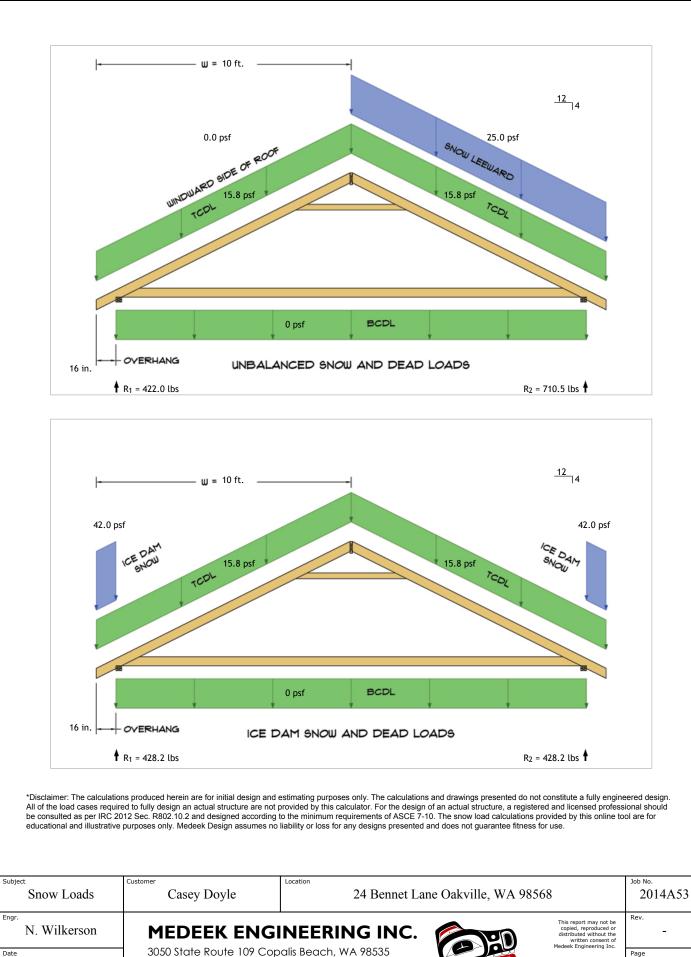
 $\gamma = 0.13p_{g} + 14 \text{ (snow density)}$ $h_{d} = .43\sqrt[3]{I_{u}}\sqrt[4]{p_{g} + 10} - 1.5 \text{ (drift height)}$ $I_{d} = \frac{8}{3}h_{d}\sqrt{S} \text{ (width of drift surcharge)}$ $p_{d} = h_{d}\gamma/\sqrt{S} \text{ (drift surcharge snow load)}$

where:

 γ = Snow density in pcf, not to exceed 30 pcf. h_d = Drift height in feet, as determined by eqn. or ASCE 7-10 Fig. 7-9. l_u = W = Ridge to eave distance in feet, windward side of roof. S = 12/Roof Pitch l_d = Width of drift surcharge in feet.

pd = Drift Surcharge Snow Load in psf


Snow Loads	Customer Casey Doyle	24 Bennet Lane Oak	ville, WA 98568	^{Job No.} 2014A53
^{Engr.} N. Wilkerson			This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering Inc.	Rev. -
Date 7/7/2014	3050 State Route 109 Cop ph. (425) 741-5555 www		Copyright © 2014	Page 2


For a roof rafter system with $W \le 20$ ft., the simplified unbalanced snow load is given by the third diagram of ASCE Figure 7-5.

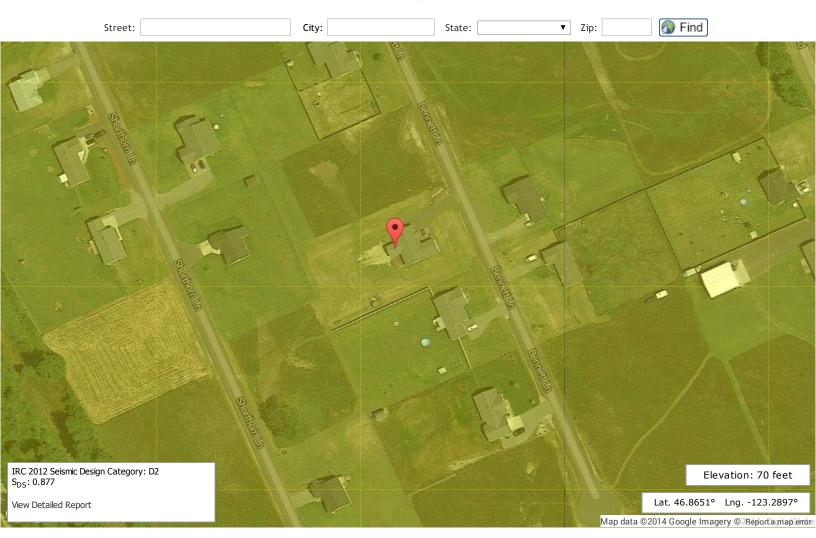
$p_{windward} = 0.0 \text{ psf}$ $p_{leeward} = I_s p_g = (1.00)(25.0) = 25.0 \text{ psf}$

On warm roofs apply a distributed $2p_f$ snow load on all overhanging portions as per ASCE 7-10 section 7.4.5. No other loads except dead loads shall be present on the roof when this uniformly distributed load is applied.

 $2p_f = (2)(21.0) = 42.0 \text{ psf}$

ph. (425) 741-5555 www.medeek.com

7/7/2014



IRC Seismic Design Categories TM

Use our IRC Seismic Design Categories map to easily obtain the seismic design category (Figure R301.2(2) of IRC 2012) for any location in the contiguous United States and Alaska. You can click on the map below to determine the seismic design category for that location.

The seismic design category (SDC) is calculated based on the design spectral response acceleration (S_{ds} at Site Class = D, Risk Cat. = II), provided by the USGS Seismic API.

* Seismic Design Categories calculated from USGS Seismic API data. Local codes and ammendments may govern, verify with local building department or jurisdiction.

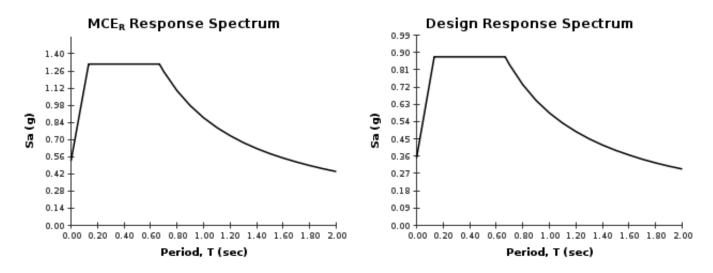
If you need to gather seismic data programmatically, please consider our *API Service*. If you have any questions or concerns please call us at 1-425-741-5555.

Copyright © 2011-2014 Medeek Design Inc.

WISGS Design Maps Summary Report

User-Specified Input

Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008)


Site Coordinates 46.8651°N, 123.2897°W Site Soil Classification Site Class D – "Stiff Soil" Risk Category I/II/III

USGS-Provided Output

$S_s =$	1.316 g	S _{MS} =	1.316 g	S _{DS} =	0.877 g
S ₁ =	0.585 g	S _{M1} =	0.878 g	S _{D1} =	0.585 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

Straps & Ties

H/TSP Seismic & Hurricane Ties

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 27 for more information.

SIMPSON

Strong-Tie

Madal			Fasteners		DF/SP	Allowable	Loads	Uplift with	SPF/HF	Allowabl	e Loads	Uplift with	
Model No.	Ga	To Rafters/	T. DI	T. Obuda	Uplift	Latera	l (160)	8dx1½ Nails	Uplift	Latera	l (160)	8dx1½ Nails	Code Ref.
NU.		Truss	To Plates	To Studs	(160)	F ₁	F ₂	(160)	(160)	F ₁	F ₂	(160)	nei.
H1	18	6-8dx1½	4-8d	_	585	485	165	455	400	415	140	370	I17, L6, F16
H2A	18	5-8dx1½	2-8dx1½	5-8dx1½	575	130	55	—	495	130	55	—	IP1, L18, F2
H2ASS	18	5-SS8D	2-SS8D	5-SS8D	400	130	55	400	345	130	55	345	170
H2.5A	18	5-8d	5-8d	—	600	110	110	575	535	110	110	495	l17, F16
H2.5ASS	18	5-SS8d	5-SS8d	—	440	75	70	365	380	75	70	310	170
H2.5T	18	5-8d	5-8d	—	545	135	145	425	545	135	145	425	IP1, L18, F2
H3	18	4-8d	4-8d	—	455	125	160	415	320	105	140	290	
H4	20	4-8d	4-8d	—	360	165	160	360	235	140	135	235	l17, L6, F16
H5	18	4-8d	4-8d	—	455	115	200	455	265	100	170	265	
H6	16	—	8-8d	8-8d	950	—	—	—	820	_	—	—	117, F16
H7Z	16	4-8d	2-8dx1½	8-8d	985	400	—	—	845	345	—	—	117, FTO
H8	18	5-10dx1½	5-10dx1½	—	745	75	—	630	565	75	-	510	L10, F26
H10A Sloped	18	9-10dx1½	9-10dx1½	—	855	590	285	—	760	505	285	—	
H10A	18	9-10dx1½	9-10dx1½	—	1140 ⁷	590	285	—	1015	505	285	—	117, L18, F25
H10ASS	18	9-SSN10	9-SSN10	—	970	565	170	—	835	485	170	—	170
H10AR	18	9-10dx1½	9-10dx1½	—	1050	490	285	—	905	420	285	—	170
H10S ^{9,10}	18	8-8dx1½	8-8dx11/210	8-8d	1010	660	215	550	870	570	185	475	IP1, L18, F2
H10A-2	18	9-10dx1½	9-10dx1½	—	1245	815	260	—	1070	700	225	—	F25
H10-2	18	6-10d	6-10d	—	760	455	395	—	655	390	340	—	l17, F16
H11Z	18	6-16dx2½	6-16dx2½	—	830	525	760	—	715	450	655	—	170
H14	18	1 12-8dx1½	13-8d	—	1350 ⁷	515	265	—	1050	480	245	—	ID1 110 E01
1114	10	2 12-8dx1½	15-8d	—	1350 ⁷	515	265	—	1050	480	245	—	IP1, L18, F25
TSP	16	9-10dx1½	6-10dx11/2	—	740	310	190	—	635	265	160	_	F26
IJF	10	9-10dx1½	6-10d	—	890	310	190	—	765	265	160	—	F20

1. Loads have been increased for wind or earthquake loading with no

- Loads have been increased for wind or earthquake loading with no further increase allowed: reduce where other loads govern.
 Allowable loads are for one anchor. A minimum rafter thickness of 2½" must be used when framing anchors are used on each side of the joist and on the same side of the plate (exeption: connectors installed such that nails on opposite side don't interfere).
 Allowable DF/SP uplift load for stud to bottom plate installation (see detail 15) is 390 lbs. (H2.5A): 265 lbs. (H2.5ASS); 360 lbs. (H4) and 310 lbs. (H8). For SPF/HF values multiply these values by 0.86.
 Allowable loads in the F₁ direction are not intended to replace diaphragm boundry members or cross grain bending of the truss or rafter members.
 When cross-grain bending or cross-grain tension cannot be avoided in the members, mechanical reinforcement to resist such forces may be considered.
 Hurricane Ties are shown on the outside of the wall for clarity and assume a minimum overhang of 3½". Installation on the inside of the wall is acceptable (see General Instructions for the Installer notes u on page 17).

- acceptable (see General Instructions for the Installer notes u on page 17).
- For uplift Continuous Load Path, connections in the same area (i.e. truss to plate connector and plate to stud connector) must be on the same side of the wall. Southern Pine allowable uplift loads for H10A = 1340 lbs. and for the H14 = 1465 lbs. Refer to Simpson Strong-Tie® technical bulletin T-HTIEBEARING for allowable bearing
- 8
- Refer to Simpson Strong-frie® technical bulletin T-HTIEBEARING for allowable bearing enhancement loads.
 H10S can have the stud offset a maximum of 1" from rafter *(center to center)* for a reduced uplift of 890 lbs. (DF/SP) and 765 lbs. (SPF).
 H10S nails to plates are optional for uplift but required for lateral loads.
 Some load values for the stainless-steel connectors shown here are lower than those for the carbon-steel versions. Ongoing test programs have shown this to also be the case with other stainless-steel connectors in the product line that are installed with nails. Visit *www.strongtie.com/corrosion* for updated information.
 NALLS: 16dx2½ = 0.162' dia. x 2½' long, 10d = 0.148' dia. x 3' long, 10dx1½ = 0.148' dia. x 1½' long, 8d = 0.131' dia. x 2½' long. 8dx1½ = 0.131'' dia. x 1½'' long. See page 22-23 for other nail sizes and information.
 SCREWS: Strong-Drive® SD #9x1½'' (model SD9112) = 0.131'' dia. x 1½'' long *(for the models marked with the orange flag only)*. Full table loads apply.

4

H6 Stud to Band

Joist Installation

(12)

0

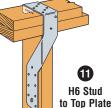
6 H2.5T Installation

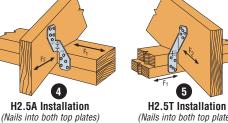
9

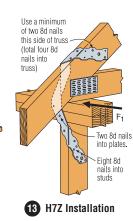

H4 Installation

(Nails into upper top plate)

2




TSP Installation



Installation

(Nails into both top plates)

Straps & Ties

ABA/ABU/ABW Adjustable and Standoff Post Bases

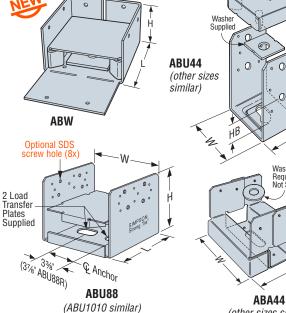
Additional standoff bases are on page 214.

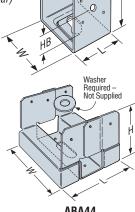
The AB series of retrofit adjustable post bases provide a 1" standoff for the post, are slotted for adjustability and can be installed with nails, Strong-Drive® SD screws or bolts (ABU). Depending on the application needs, these adjustable standoff post bases are designed for versatility, cost-effectiveness and maximum uplift performance.

- Features:
 - . The slot in the base enables flexible positioning around the anchor bolt, making precise post placement easier
 - . The 1" standoff helps prevent rot at the end of the post and meets code requirements for structural posts installed in basements or exposed to weather or water splash

MATERIAL: Varies (see table)

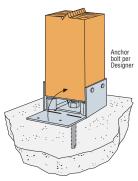
FINISH: All galvanized, most offered in ZMAX®; see Corrosion Information, page 14-15.


INSTALLATION: • Use all specified fasteners. See General Notes.


- See our Anchoring and Fastening Systems for Concrete and Masonry catalog, or visit www.strongtie.com for retrofit anchor options or reference technical bulletin T-ANCHORSPEC.
- · Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).
- · Place the base, load transfer plate and nut on the anchor bolt. Loosely tighten the nut.
- ABW-Place the standoff base and then the post in the ABW and fasten on three vertical sides, using nails or Strong-Drive SD structural-connector screws.
- Make any necessary adjustments to post placement and tighten the nut securely on the anchor bolt.
- Bend up the fourth side of the ABW and fasten using the correct fasteners
- ABU—Place the standoff base and then the post in the ABU.
- Fasten using nails or Strong-Drive SD structural connector screws or bolts (ABU88, ABU1010 - SDS optional).
- ABA—Place the post in the ABA.
- Fasten using nails or SD Screws.

CODES: See page 13 for Code Reference Key Chart.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.


These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 27 for more information.

Caps & Bases

(other sizes similar)

Typical ABW Installation

		Mat	erial	Dii	mensi	ons (i	n.)	Fasteners				Allowable Loads (DF/SP)			
Model	Nominal							Anchor	F	Post		Uplift	(160)		Code
No.	Post Size	Base (Ga)	Strap (Ga)	W	L	н	HB⁵	Dia. (in.)	Nails		hine Its Dia.	Nails	Bolts	Down (100)	Ref.
ABA44Z	4x4	16	16	3 %16	31/8	3 ¹ / ₁₆		1/2	6-10d	<u>ury</u> .	<u> </u>	555	_	6000	13, F1
ABW44Z	4x4	16	16	3% 16	3% 16	21⁄4	_	1/2	8-10d	—	—	1005	—	7180	170
ABU44	4x4	16	12	3%16	3	5½	13⁄4	5⁄8	12-16d	2	1/2	2200	2160	6665	13, L2, F1
ABA44R	Rough 4x4	16	16	41/16	31/8	2 ¹³ /16	—	1/2	6-10d	—	—	555	—	8000	I3, F1
ABW44RZ	Rough 4x4	16	16	4	4½ 16	1 ³² /33	—	1/2	8-10d	—	—	1005	—	7180	170
ABW46Z	4x6	12	16	3% 16	5% 16	3	—	1⁄2	10-10d	—	—	845	_	4590	170
ABA46Z	4x6	14	14	3%16	5 ¾16	31/8	—	5⁄8	8-16d	—	—	700	—	9435	13, F1
ABU46	4x6	12	12	3%16	5	7	25⁄8	5⁄8	12-16d	2	1/2	2300	2300	10335	13, L2, F1
ABW46RZ	Rough 4x6	12	16	4	6	2 ¹³ ⁄16	—	1⁄2	10-10d	—	—	845	—	4590	170
ABA46R	Rough 4x6	14	14	4¼ ₁₆	5 ¾16	21/8	—	5/8	8-16d	—	—	700	—	12000	I3, F1
ABU5-5	51%x51%	12	10	5¼	5	6 ¹ ⁄ ₁₆	1¾	5⁄8	12-16d	2	1/2	2235	2235	12000	
ABU5-6	51∕8x6	12	10	6 1⁄8	5	6 ¹ ⁄ ₁₆	1¾	5⁄8	12-16d	2	1⁄2	2235	2235	12000	
ABA66Z	6x6	14	14	5½	5¼	31/8	—	5⁄8	8-16d	—	—	720	—	10665	13, F1
ABW66Z	6x6	12	14	5½	5% 16	3	—	1⁄2	12-10d	—	—	1190		12935	170
ABU66	6x6	12	10	5½	5	61/16	1 ¾	5/8	12-16d	2	1/2	2300	2300	12000	13, L2, F1
ABA66R	Rough 6x6	14	14	6	5 ¾16	21/8	—	5/8	8-16d	—	—	720	—	12665	I3, F1
ABW66RZ	Rough 6x6	12	14	6	6	2 ¹³ ⁄16	—	1⁄2	12-10d	—	—	1190	—	12935	170
ABU88 ⁴	8x8	14	12	7½	7	7	—	2-5/8	18-16d	—	—	2320		24335	13, F1
ABU88R ⁴	Rough 8x8	14	12	8	7	7	—	2-5/8	18-16d	—	—	2320		24335	170
ABU1010Z	10x10	12	12	9 ½	9	7¼	—	2-%	22-16d		—	2270	—	32020	
ABU1010RZ	Rough 10x10	12	12	10	9	7	_	2-5/8	22-16d	_	—	2270	_	32020	

Typical ABA44 Installation

- 1. Uplift loads have been increased for wind or earthquake with no further increase allowed; reduce
- where other loads govern. Downloads may not be increased for short-term loading.
- 3. Specifier to design concrete for
- 4. ABU products may be installed with either bolts or nails (not *both)* to achieve table loads. ABU88 and ABU88R may be installed with 8-SDS 1/4"x3" wood
- as the second download on column, grout, or concrete according to the code. HB dimension is the distance 6
- from the bottom of the post up
- to the first bolt hole. 7. Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers. For SCL columns, the fasteners for these products should always
- be installed in the wide face. Downloads shall be reduced where limited by the capacity of 8 the post. See pages 226-227 for common post allowable loads.
- 9. NAILS: 16d = 0.162" dia. x 3½" long, 10d = 0.148" dia. x 3" long. See page 22-23 for other nail sizes and information.

Model No.

HU216-3TF

HU34TF W36

HU36TF W38 HU38TF

B38 W310

HU310TF

HU312TF

HU314TF

HU316TF B316

HU43TF

HU44TF HUS46TF

W46

B48 W48

HU48TF

HW48 BA410 (Min) BA410 (Max) HUS410TF

B410

W410 HU410TF

HW410 GLT4

HGLT4 BA412 (Min)

B412 WNP412

HU412TF

HW412

HHB412

GLT4

HGLT4

12 3%16

11 3%16

7 **3**%16

7 3%16

7

3%16

11

11

11

71/2 Min

71/2 Min

21/2

21/2

3

5

6

21/2

21/2

21/2

21/2

21/2

16-16d

4-10d

4-N54A

10-N54A

18-N54A

6-10d

2-10d

2-N54A

6-N54A

6-N54A

1125

_

650

1865

1865

4550

5285

4185

7000

12750

4885

5285

4185

7000

12750

5105

5285

4185

7000

12750

BA412 (Max) HUS412TF

HU46TF HW46 BA48 (Min)

BA48 (Max) HUS48TF

B310 WNP312

B312 WNP314

B314 WNP316

Joist or

Purlin Size

TPL 2x16 3x4

3x6

3x8

3x10

3x12

3x14

3x16

4x3

4x4

4x6

4x8

4x10

4x12

TOP FLANGE HANGERS – SOLID SAWN LUMBER (DF/SP)

		Dimen	sions		Faste	eners		DF/SP Allov	vable Loads		Installed		
Ga	W	H	В	TF	Header	Joist	Uplift (160)	Floor (100)	Snow (115)	Roof (125)	Cost Index (ICI)	Code Ref.	
1					SAV	VN LUMBER S	IZES	1			J		
12	4 ¹¹ / ₁₆	15	21/2	2 ½	20-16d	8-16d	1765	5050	5050	5050	Lowest		
12	2%16	31/16	21/2	2 ½	8-16d	2-10dx1½	295	2600	2600	2600	*		
12	2%16	53%	2	21/2	2-10d	2-10dx11/2	—	2200	2200	2200	*		
12	2%16	53%	21/2	21/2	10-16d	4-10dx11/2	590	3725	3900	3900	*	110, F9, L11	
12	2%16	71⁄8	2	21/2	2-10d	2-10dx1½	—	2200	2200	2200	*		
12	2%16	71⁄8	21/2	21/2	12-16d	4-10dx11/2	590	3900	3900	3900	*		
12	2%16	71⁄8	21/2	2 ½	14-16d	6-16dx2½	1010	3800	3800	3800	*	119, L13	
12	2%16	91⁄8	2	21/2	2-10d	2-10dx11/2	—	2200	2200	2200	*		
12	2%16	91⁄8	21/2	21/2	14-16d	6-10dx1½	885	4170	4170	4170	*	110, F9, L11	
12	2%16	91/8	21/2	21/2	14-16d	6-16dx2½	1010	3800	3800	3800	*	119, F21, L13	
12	2%16	11	21/2	23/16	2-10d	2-10dx1½	—	3255	3255	3255	*		
12	2%16	11	21/2	21/2	16-16d	6-10dx1½	885	4335	4335	4335	*	110, F9, L11	
12	2%16	11	21/2	21/2	14-16d	6-16dx2½	1010	3800	3800	3800	*	119, F21, L13	
12	2%16	13	21/2	23/16	2-10d	2-10dx1½	—	3255	3255	3255	*		
12	2 %16	13	21/2	2 ½	18-16d	8-10dx1½	1180	4335	4335	4335	*	110, F9, L11	
12	2 %16	13	2 ½	2 ½	14-16d	6-16dx2½	1010	3800	3800	3800	*	119, F21, L13	
12	2 %16	15	21/2	2 ¾16	2-10d	2-10dx1½	_	3255	3255	3255	*		
12	2%16	15	21/2	2 ½	20-16d	8-10dx1½	1180	4335	4335	4335	*	110, F9, L11	
12	2%16	15	21/2	21/2	14-16d	6-16dx2½	1010	3800	3800	3800	*	119, F21, L13	
12	3 %16	3	21/2	21/2	8-16d	2-10d	330	2600	2600	2600	*		
12	3%16	37/16	21/2	21/2	8-16d	2-10d	375	2600	2600	2600	Lowest		
14	3 %16	53%	2	1½	6-16d	4-16d	1235	2700	2890	3000	Lowest		
12	3 %16	53/8	21/2	21/2	2-10d	2-10d	_	2200	2200	2200	+12%	110, F9, L11	
12	3 %16	5 ³ /8	2 ½	2 ¹ / ₂	10-16d	4-10d	750	3165	3165	3165	+28%		
11	3 %16	53%	21/2	21/2	4-10d	2-10d		5285	5285	5285	+83%		
14	3%16	71/8	3	21/2	16-16d	2-10dx1½	265	3435	3435	3435	Lowest		
14	3%16	71/8	3	21/2	16-16d	8-10dx1½	1170	3800	3800	3800	+7%	119, F21, L13	
14	3 %16	71⁄4	2	1 ¹¹ / ₁₆	8-16d	6-16d	1550	3225	3495	3670	+33%	110, IL12, F9, L11	
12	3%16	71/8	21/2	21/2	14-16d	6-16d	1010	3800	3800	3800	+35%	119, F21, L13	
12	3%16	71/8	21/2	21/2	2-10d	2-10d		2200	2200	2200	+54%		
12	3%16	71/8	21/2	21/2	12-16d	4-10d	750	3500	3500	3500	+95%	l10, F9, L11	
11	3%16	71/8	21/2	21/2	4-10d	2-10d	_	5285	5285	5285	+130%		
14	3 %16	91/8	3	2 ½	16-16d	2-10dx1½	265	3435	3435	3435	Lowest		
14	3 %16	91/8	3	21/2	16-16d	8-10dx1½	1170	3800	3800	3800	+7%	119, F21	
14	3 %16	91⁄4	2	1½	10-16d	8-16d	2590	3365	3710	3935	+21%	I10, F9, L11	
12	3 %16	91/8	21/2	21/2	14-16d	6-16d	1010	3800	3800	3800	+35%	119, F21, L13	
12	3 %16	91/8	21/2	21/2	2-10d	2-10d		2200	2200	2200	+49%		
12	3%16	91/8	21/2	21/2	14-16d	6-10d	1125	4150	4150	4150	+86%	l10, F9, L11	
11	3 %16	9½	21/2	21/2	4-10d	2-10d	_	5285	5285	5285	+130%	-,, -	
7	3 %16	7½ Min.	5	21/2	10-N54A	6-N54A	1865	7000	7000	7000	*	l19, F18, L14	
7	3 %16	7½ Min.	6	21/2	18-N54A	6-N54A	1865	12750	12750	12750	*	110, 110, 211	
14	3 %16	11	3	21/2	16-16d	2-10dx1½	265	3435	3435	3435	Lowest		
14	3 %16	11	3	2½	16-16d	8-10dx1½	1170	3800	3800	3800	+6%	119, F21, L13	
14	3 %16	111/8	2	2	10-16d	8-16d	2000	4420	4760	4990	+14%	I10, F9	
12	3 %16	11	21/2	21/2	14-16d	6-16d	1010	3800	3800	3800	+27%	110, 1 3	
12	3 %16	11	21/2 21/2	2 ³ / ₁₆	2-10d	2-10d		3255	3255	3255	+32%		
12	0716	11	Z 72	Z716	2-100	2-10U	1105	4550	3200	5200	+32%		

See footnotes on page 80.

* CODES: See page 13 for Code Reference Key Chart.

+84%

+115%

+174%

*

110, F9, L11

119, F18, L14

I19, L14

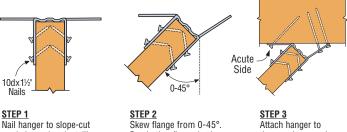
Strong-Tie

LSU/LSSU Adjustable Light Slopeable/Skewable U Hangers

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The LSU and LSSU series of hangers may be sloped and skewed in the field, offering a versatile solution for attaching joists and rafters. These hangers may be sloped up or down and skewed left or right, up to 45°. MATERIAL: See table

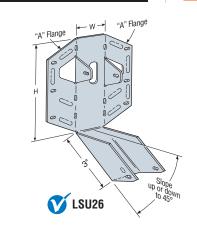
FINISH: Galvanized. Some products available in ZMAX[®] coating; see Corrosion Information, page 14-15.

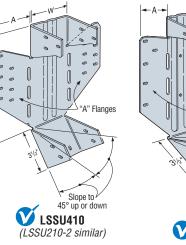

INSTALLATION:

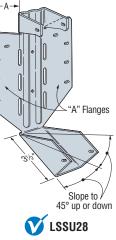
- Use all specified fasteners. See General Notes.
- Attach the sloped joist at both ends so that the horizontal force
- developed by the slope is fully supported by the supporting members.
- To see an installation video on this product, visit www.strongtie.com.

CODES: See page 13 for Code Reference Key Chart.

LSU and LSSU INSTALLATION SEQUENCE


(For Skewed or Sloped/Skewed Applications)




Nail hanger to slope-cut carried member, installing seat nail first. No bevel necessary for skewed installation. Install joist nails at 45° angle.

Bend other flange back along centerline of slots until it meets the header. Bend one time only.

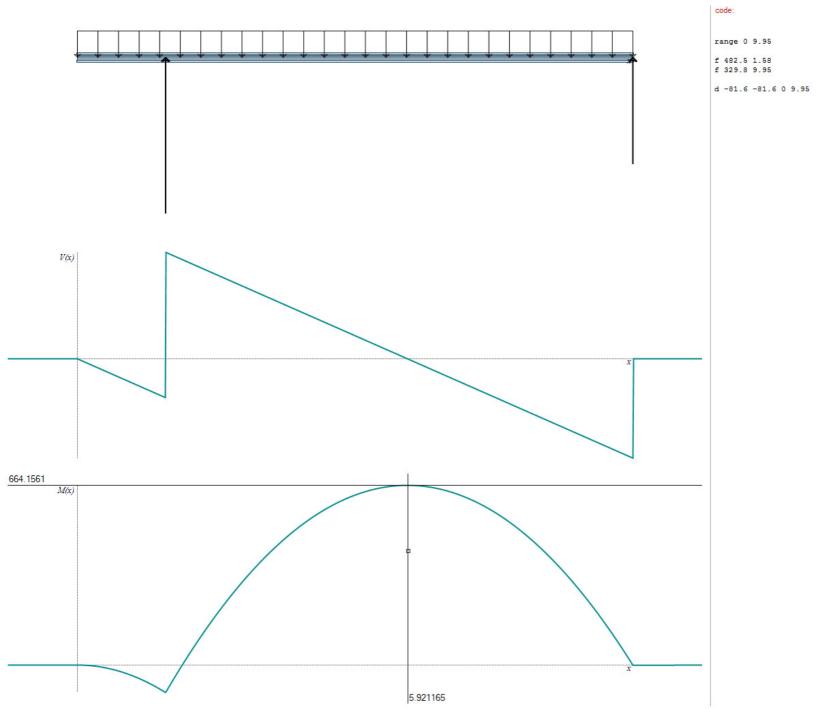
Attach hanger to the carrying member, acute angle side first (see footnote 4). Install nails at an angle.

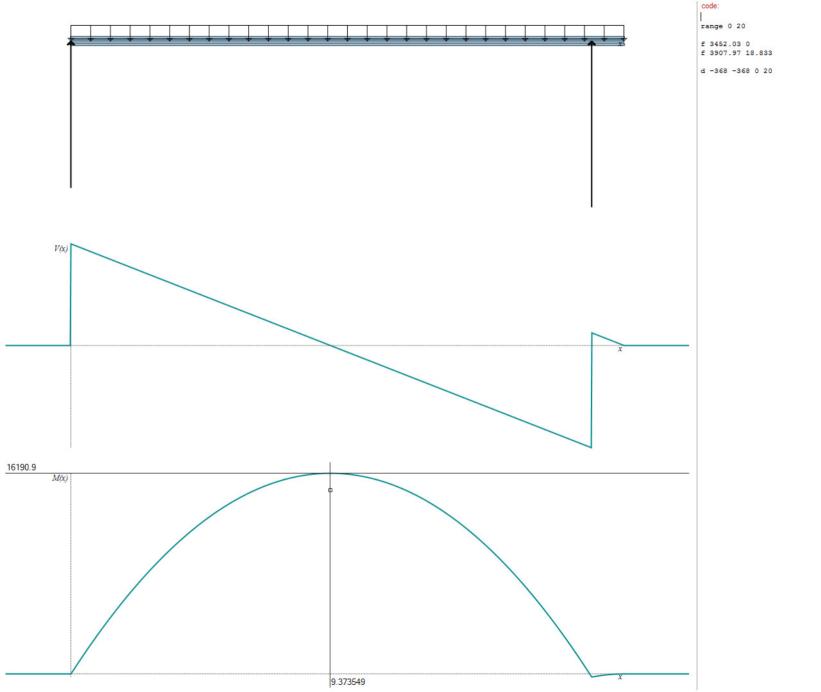
SIMPSO

Strong-Tie

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

			Di	mensio	ns	Fas	steners	D	F/SP Allov	vable Loa	ds	SP	F/HF Allo	wable Loa	ds	
Joist Width		Ga	w	Н	A	Face	Joist	Uplift² (160)	Floor (100)	Snow (115)	Roof (125)	Uplift² (160)	Floor (100)	Snow (115)	Roof (125)	Code Ref.
Sloped Only Hangers																
11/2	LSU26	18	1%16	41/8	1½	6-10d	5-10dx11/2	535	695	810	865	415	600	695	745	
11/2	LSSU28	18	1 %16	71⁄8	1½	10-10d	5-10dx11/2	535	1110	1275	1390	415	960	1105	1200	18, F7, L15
1½	LSSU210	18	1%16	81/2	1%	10-10d	7-10dx1½	875	1110	1275	1390	625	960	1105	1200	
21/2	LSSUH310	16	2%16	81/2	31/8	18-16d	12-10dx11/2	1150	2295	2295	2295	990	1930	1930	1930	170
3	LSSU210-2	16	31/8	81/2	21/8	18-16d	12-10dx11/2	1150	2430	2795	3035	990	2160	2485	2700	
31/2	LSSU410	16	3%16	81/2	25/8	18-16d	12-10dx11/2	1150	2430	2795	3035	990	2160	2485	2700	18, F7, L15
							Skewed	Hangers	or Sloped	and Skew	ed					
1½	LSU26	18	1 %16	41/8	1½	6-10d	5-10dx1½	535	695	810	865	415	600	695	745	
11/2	LSSU28	18	1%16	71/8	1½	9-10d	5-10dx11/2	450	885	885	885	415	765	765	765	18, F7, L15
1½	LSSU210	18	1%16	81/2	1%	9-10d	7-10dx11/2	785	995	1145	1205	625	860	995	1050	
21/2	LSSUH310	16	2%16	81/2	31/8	14-16d	12-10dx11/2	1150	1600	1600	1600	990	1385	1385	1385	170
3	LSSU210-2	16	31/8	8 ½	21/8	14-16d	12-10dx11/2	1150	1625	1625	1625	990	1365	1365	1365	19 57 1 15
31/2	LSSU410	16	3 %16	81⁄2	25⁄8	14-16d	12-10dx1½	1150	1625	1625	1625	990	1365	1365	1365	18, F7, L15


1. Roof loads are 125% of floor loads unless limited by other criteria.


2. Uplift loads include an increase for wind or earthquake loading with no further increase allowed;

reduce when other loads govern.

3. Truss chord cross-grain tension may limit allowable loads in accordance with ANSI/TPI 1-2007. Simpson Strong-Tie® Connector Selector[™] Software includes the evaluation of cross-grain tension in its hanger allowable loads. For additional information, contact Simpson Strong-Tie.

- 4. For skewed LSSU hangers, the inner most face fasteners on the acute angle side are not installed.
- 5. Do not substitute $10dx1\frac{1}{2}$ nails for face nails on slope and skew combinations or skewed only LSU and LSSU. 6. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2}$ = 0.148" dia. x $1\frac{1}{2}$ " long. See page 22-23 for other nail sizes and information.

