

MEDEEK ENGINEERING INC.

3050 State Route 109 Copalis Beach, WA 98535 Phone: 425-741-5555 Email: nathan@medeek.com

ENGINEERING REPORT

STRUCTURAL REVIEW

August 5, 2015

JOB NUMBER:	2015-035
PLAN NUMBER: _	BAXTER MINI-STORAGE
CUSTOMER:	MARK BAXTER
LOCATION:	3019 OCEAN BEACH RD. PACIFIC BEACH WA 98571

Engineer's seal applies to this entire calculation packet. This packet is void if engineer's seal is not an original and signature is not signed in blue ink.

Engineer: Nathaniel P. Wilkerson

This engineering report is valid only for the building located at 3019 Ocean Beach Rd., Pacific Beach WA 98571.

This report is to be used only once and may not be copied, reproduced or distributed without the written consent of Medeek Engineering Inc.

Job#: 2015-035

1500.0 PSF

ENGINEERING REPORT: STRUCTURAL REVIEW

Customer: Mark Baxter

Location: 3019 Ocean Beach Rd. Pacific Beach WA 98571

Engr: Nathaniel P. Wilkerson

Date: 29-Jul-15

CODES

ICC International Building Code IBC 2012 American Concrete Institute ACI 318-11

Minimum Design Loads for Buildings ASCE7-10 AWC NDS 2012

DESIGN CRITERIA SUMMARY

Ground Snow Load	25.0 PSF
Frost Line Depth	12.0 IN
Occupancy Classification	S-1
Risk Category	II
Snow Importance Factor (I _s)	1.0
Wind Speed (ultimate)	135.0 MPH
Terrain Exp. Category	С
Wind Importance Factor (I _w)	1
Wind Factor in Load Combinations (ASD)	0.6
Site Class	D Stiff Soil
Seismic Design Category (SDC)	D
Seismic Factor in Load Combinations (ASD)	0.7
Seismic Importance Factor (I _e)	1.0
Construction Type	V-B

LOADS

Soil Bearing Capacity

Floor Dead Load	10.0 PSF
Floor Live Load	40.0 PSF
Roof TC Dead Load	7.0 PSF
Roof BC Dead Load	5.0 PSF
Ceiling Dead Load (Gypsum)	5.0 PSF
Roof Live Load (Construction)	20.0 PSF

Roof Snow Load (P_s) [See Snow Load Report] 19.3 PSF (governs)

Stair Live Load 40.0 PSF
Deck Live Load 50.0 PSF

BUILDING DATA

Roof Pitch	4.00 :12
Roof Eve Height	8.500 FT
Peak Roof Height	16.167 FT
Mean Roof Height	12.334 FT
Building Length (L)	83.625 FT
Building Width (B)	42.875 FT
Latitude	47.2026 N
Longitude	124.1708 W
Elevation:	55.0 FT

SEISMIC	
	7
olimin	١

SDS	0.984 g
SD1	0.735 g

Fundamental Period (Ta)
$$T_a = C_t h_n^x \qquad = \qquad 0.132 \; \mathrm{sec}.$$
 To
$$0.149 \; \mathrm{sec}.$$
 Ts
$$0.747 \; \mathrm{sec}.$$
 TL
$$(\mathrm{Fig.}\; 22\text{-}12)$$

$$16.0 \; \mathrm{sec}.$$

$$\begin{array}{lll} \mbox{Response Modification Factor (R) } & 6.5 \mbox{ WSP SWL} \\ \mbox{Response Modification Factor (R) } & 2 \mbox{ GYP SWL} \\ \mbox{Deflection Amplification Factor (C_d) } & 4 \mbox{ WSP SWL} \\ \mbox{Overstrength factor (} \Omega_0) & 3 \mbox{ WSP SWL} \\ \end{array}$$

Seismic Response Coef.(Cs)
$$C_s = \frac{S_{DS}}{\left(\frac{R}{I_e}\right)} = \textbf{0.151}$$

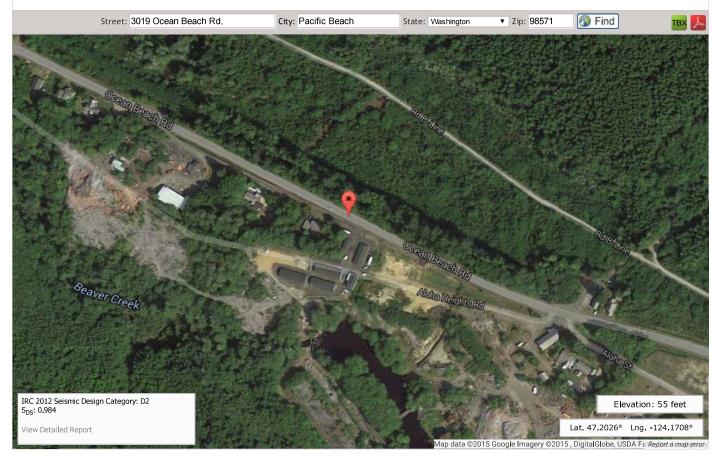
$$\text{Max. Seismic Response Coef.(Csmax)} \qquad C_s = \frac{S_{D1}}{T_a \bigg(\frac{R}{I_e}\bigg)} \quad = \quad \quad 0.858$$

Min. Seismic Response Coef.(Csmin)

$$C_s = 0.044 S_{DS} I_e \ge 0.01 = 0.039$$

if S1
$$\geq$$
 0.6g: $C_s = \frac{0.5S_1}{\left(\frac{R}{I_e}\right)} = 0.057$

^{*}For pitched or sloped roofs, the structural height is from the base to the average height of the roof.



MEDEEK DESIGN

IRC Seismic Design Categories TM

Use our IRC Seismic Design Categories map to easily obtain the seismic design category (Figure R301.2(2) of IRC 2012) for any location in the contiguous United States, Puerto Rico and Alaska. You can click on the map below to determine the seismic design category for that location.

The seismic design category (SDC) is calculated based on the design spectral response acceleration (S_{ds} at Site Class = D, Risk Cat. = II), provided by the USGS Seismic API.

^{*} Seismic Design Categories calculated from USGS Seismic API data. Local codes and ammendments may govern, verify with local building department or jurisdiction.

If you need to gather seismic data programmatically, please consider our *API Service*. If you have any questions or concerns please call us at 1-425-741-5555.

Copyright $\ \odot$ 2011-2015 Medeek Design Inc.

USGS Design Maps Summary Report

User-Specified Input

Building Code Reference Document 2012 International Building Code

(which utilizes USGS hazard data available in 2008)

Site Coordinates 47.2026°N, 124.1708°W

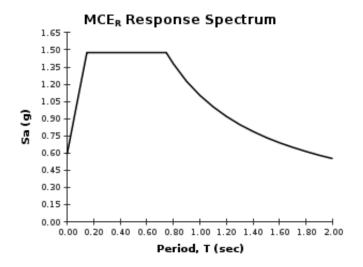
Site Soil Classification Site Class D - "Stiff Soil"

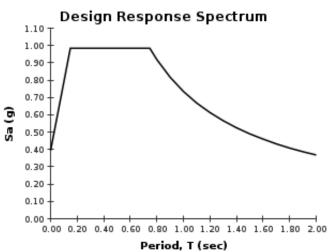
Risk Category I/II/III

USGS-Provided Output

$$S_s = 1.476 g$$

$$S_{MS} = 1.476 g$$


$$S_{DS} = 0.984 g$$


$$S_1 = 0.735 g$$

$$S_{M1} = 1.103 g$$

$$S_{D1} = 0.735 g$$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

Snow Load Report

1. Roof and Building Data

Ground Snow Load (Pg): 25.0 psf Roof Pitch: 4/12Risk Category: II Eave-to-Ridge (W): 22.7708 ft. Terrain Category: C Exposure: Partially Exposed Thermal Factor (C_t): 1.10 Roof Surface: Asphalt Shingles Roof System: truss

Spacing: 24 in. o/c Overhang: 16 in.

2. Design Loads

Top Chord Dead Load: 7 psf Bottom Chord Dead Load: 10 psf

 $SF(Slope\ Factor) = 1/Cosine(\Phi) = 1.05$ (Dead loads specified on a projected horizontal basis take into account the effect of the pitch via a slope factor.)

Adj. TCDL (TCDL x SF): 7.4 psf

3. Design Assumptions

Code Standard: ASCE 7-10 Number of Plies: 1 PLY Bottom Chord Pitch: 0 /12

4. Snow Load Calculations

Calculate flat roof snow load pf using the following equation:

 $p_f = 0.7C_eC_tI_sp_g$

where:

 p_f = Flat Roof Snow Load in psf

C_e = 1.00 = Exposure Factor, as determined by ASCE 7-10 Table 7-2 (Terrain Cat. C, Exp. Partially Exposed)

 $C_t = 1.10 = \text{Thermal Factor}$, as determined by ASCE 7-10 Table 7-3

 $I_s = 1.00 = \text{Importance Factor}$, as determined by ASCE 7-10 Table 1.5-2 (Risk Cat. II)

 $p_g = 25.0 \text{ psf} = Ground Snow Load in psf}$

 $p_f = 0.7C_eC_tI_sp_g = 0.7(1.00)(1.10)(1.00)(25.0) = 19.3 \text{ psf}$

Snow Loads	Mark Baxter	3019 Ocean Beach Rd. Pacific Beach	n WA 98571	2015-035
N. Wilkerson		INEERING INC.	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering Inc.	Rev.
8/5/2015	3050 State Route 109 Cop ph. (425) 420-5715 www		Copyright © 2015	Page 1

A minimum roof snow load, pm shall apply to monoslope, hip and gable roofs with slopes less than 15 degrees using the following equations:

Where p_g is 20 psf or less: $p_m=I_sp_g$ Where p_g exceeds 20 psf: $p_m=I_s(20)$

Roof slope is greater than 15 degrees, the minimum roof snow load, p_m, does not apply.

For locations where pg is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall included a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

Roof slope in degrees (18.43°) is greater than W/50 = 0.5, the 5.0 psf rain-on-snow surcharge load does not apply.

Calculate sloped roof snow load ps using the following equation:

 $p_s = C_s p_f$

where:

p_s = Sloped Roof Snow Load in psf

 $C_s = 1.00 = \text{Roof Slope Factor}$, as determined by ASCE 7-10 Sec. 7.4.1-7.4.4 and Figure 7-2

pf = Flat Roof Snow Load in psf

Roof surface (Asphalt Shingles) is considered a "non-slippery" roof. For a $C_t = 1.10$ the roof slope factor C_s is given by the solid line of ASCE 7-10 Figure 7-2b.

$$p_s = C_s p_f = (1.00)(19.3) = 19.3 \text{ psf}$$

Calculate unbalanced snow load for hip and gable roofs as shown in ASCE 7-10 Figure 7-5.

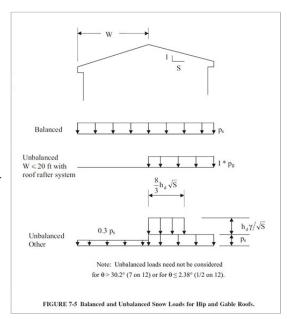
Unbalanced snow loads are required for roof pitches between 1/2 on 12 to 7 on 12.

Using the following equations:

$$\gamma = 0.13 p_g + 14$$
 (snow density)
 $h_d = .43 \sqrt[3]{l_u} \sqrt[4]{p_g + 10} - 1.5$ (drift height)
 $l_d = \frac{8}{3} h_d \sqrt{S}$ (width of drift surcharge)
 $p_d = h_d \gamma / \sqrt{S}$ (drift surcharge snow load)

where:

 γ = Snow density in pcf, not to exceed 30 pcf.


 h_d = Drift height in feet, as determined by eqn. or ASCE 7-10 Fig. 7-9.

 $l_u = W = Ridge$ to eave distance in feet, windward side of roof.

S = 12/Roof Pitch

 l_d = Width of drift surcharge in feet.

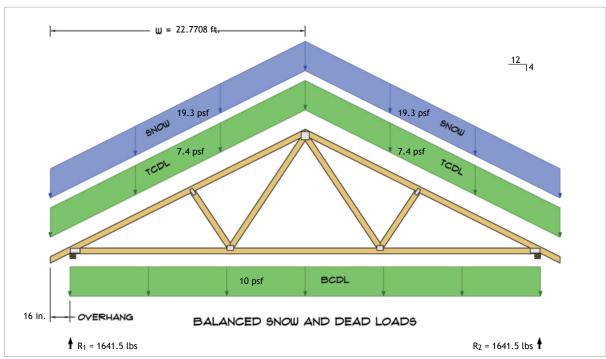
pd = Drift Surcharge Snow Load in psf

Subject	Customer	Location	Job No.
Snow Loads	Mark Baxter	3019 Ocean Beach Rd. Pacific Beach WA 98571	2015-035
N. Wilkerson		This report may not be copied, reproduced or distributed without the determinant of the d	Rev.
8/5/2015	3050 State Route 109 Cop ph. (425) 420-5715 www	palis Beach, WA 98535	Page 2

$$p_{windward} = 0.3p_s = (0.3)(19.3) = 5.8 \text{ psf}$$

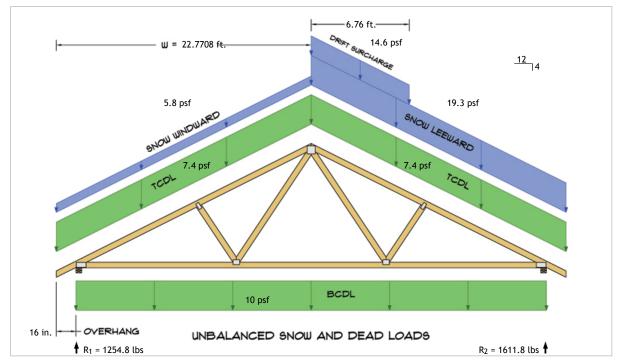
 $p_{leeward} = p_s = 19.3 \text{ psf}$

$$\gamma = 0.13(25.0) + 14 = 17.25 \text{ pcf}$$

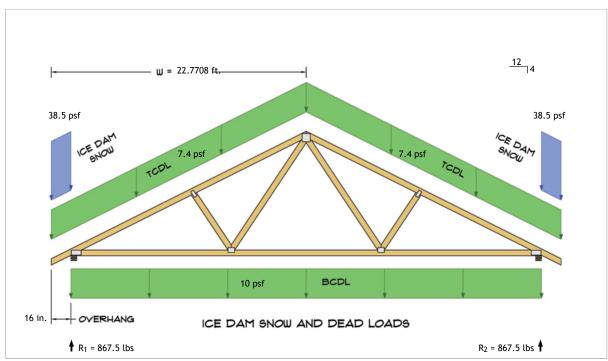

$$h_d = .43\sqrt[3]{22.7708}\sqrt[4]{25.0 + 10} - 1.5 = 1.46 \text{ ft.}$$

$$l_d = \frac{8}{3} \times 1.46 \times \sqrt{12/4} = 6.76 \text{ ft.}$$

$$p_d = \frac{1.46 \times 17.25}{\sqrt{12/4}} = 14.6 \text{ psf}$$


On warm roofs apply a distributed $2p_f$ snow load on all overhanging portions as per ASCE 7-10 section 7.4.5. No other loads except dead loads shall be present on the roof when this uniformly distributed load is applied.

$$2p_f = (2)(19.3) = 38.5 \text{ psf}$$



 $R_1 = D + S = 764.8 \text{ lbs} + 876.7 \text{ lbs}$ $R_2 = D + S = 764.8 \text{ lbs} + 876.7 \text{ lbs}$

Subject	Customer	Location	Job No.
Snow Loads	Mark Baxter	3019 Ocean Beach Rd. Pacific Beach WA 98571	2015-035
N. Wilkerson		This report may not be copied, reproduced distributed without the written consent. Medeek Injection 1.	-
8/5/2015	3050 State Route 109 Cop ph. (425) 420-5715 www	palis Beach, WA 98535	Page 3

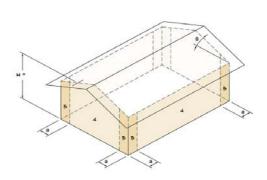
 $R_1 = D + S = 764.8 \text{ lbs} + 490.0 \text{ lbs}$ $R_2 = D + S = 764.8 \text{ lbs} + 847.0 \text{ lbs}$

 $R_1 = D + S = 764.8 \text{ lbs} + 102.7 \text{ lbs}$ $R_2 = D + S = 764.8 \text{ lbs} + 102.7 \text{ lbs}$

Snow Loads	Customer Mark Baxter	3019 Ocean Beach Rd. Pacific Beach WA 98571	Job No. 2015-035
N. Wilkerson		This report may not be copied, reproduced or district whether the written consent of Medeck Fedingerind Inc.	Rev.
8/5/2015	3050 State Route 109 Cop ph. (425) 420-5715 www	palis Beach, WA 98535	Page 4

WIND (M	IMEDS)						Job#:	2015-035
Wind Analysis Me	IWFRS)		Analytic Direc	tional D	rocoduro		ASCE 7-10 F	ia 27.4.1
Basic Wind Spee			Analytic Direc	lionai F	135.00 N	MDH.	A3CE 7-10 F	ig. 27.4-1
Topography Facto			Kzt =		1.00	VII II	ASCE 7-10 F	ia 26 8-1
Directionality Fact			Kd =		0.85		ASCE 7-10 F	_
Gust Effect Facto			G =		0.85		ASCE 7-10 S	_
Internal Pressure		s	(GCpi) =		0.18 -	0.18	ASCE 7-10 T	
Roof Pitch			(00p.)		4.00 :			43 DEG
Roof Eve Height					8.500 F			
Peak Roof Height	t				16.167 F	-T	α =	9.5
Mean Roof Heigh					12.334 F	-⊤	zg =	900
Terrain Exp. Cate	gory				С			
Velocity Pressur	·06						a 00256	KzKztKdV ²
Height (ft)	03		Kz	qz			42=.00230	NZNZINU V
he = 8.5	50	FT	0.849	33.66				
	.33	FT	0.849	33.66				
z = 15		FT	0.849	33.66			L = Parallel to v	wind dir.
z = 20		FT	0.902	35.77			B = Perp. to wir	nd dir.
z = 25		FT	0.945	37.49				
z = 30)	FT	0.982	38.95				
								. (00)
Design Pressure		Notes Bases	- Coole otata da ciona		f t th	da ataua - Navikia la la co	p = qGCp	· qh(GCpi)
Transverse Direct					for strength of	design. Multiple by 0	.6 for ASD.	
L = 42		L/B = h/L =					Decian Dro	acura (nof)
B = 83	0.023	z (ft)			Ср	qGCp	Design Pres (+GC	,
Windward Wall		15	qz (psf) 33.66		0.80	22.89	,	.83 28.95
Williawala Wali		20			0.80	24.32	-	.26 30.38
		25			0.80	25.49		.43 31.55
		30			0.80	26.49		
Leeward Wall		12.33			-0.50	-14.31	-20.	
Side Wall		12.33			-0.70	-20.03		
Windward Roof (F	Positive)	12.33			0.11	3.10		.96 9.16
Windward Roof (N	Negative)	12.33	33.66	;	-0.38	-10.94	-17.	.00 -4.88
Leeward Roof	,	12.33	33.66	i	-0.57	-16.27	-22.	.33 -10.21
Ridge Parallel Ro	of	(0 to h/2)	33.66	i	-0.90	-25.75	-31.	.81 -19.69
		(h/2 to h)	33.66	;	-0.90	-25.75	-31.	.81 -19.69
		(h to 2h)	33.66	i	-0.50	-14.31	-20.	.37 -8.25
		(>h2)	33.66	i	-0.30	-8.58	-14.	.64 -2.52
Longitudinal Direc	rtion:	Note: Pressures are	e limit state design r	oressures	for strength (design. Multiple by 0	6 for ASD	
L = 83		L/B =			.o. oog	accigiii illanapie zy c	.0 10171021	
B = 42		h/L =					Design Pres	ssure (psf)
		z (ft)			Ср	qGCp	(+GC	
Windward Wall		15			0.80	22.89	,	.83 28.95
		20			0.80	24.32		
		25	37.49		0.80	25.49		
		30	38.95		0.80	26.49	20.	.43 32.55
Leeward Wall		12.33	33.66		-0.31	-8.87	-14.	.93 -2.81
Side Wall		12.33	33.66		-0.70	-20.03	-26.	.09 -13.97
Windward Roof (F	Positive)	12.33	33.66	i	0.14	3.93	-2.	.13 9.99
Windward Roof (N	Negative)	12.33	33.66		-0.36	-10.38	-16.	.44 -4.32
Leeward Roof		12.33	33.66		-0.57	-16.27	-22.	
Ridge Parallel Ro	of	(0 to h/2)	33.66		-0.90	-25.75	-31.	.81 -19.69
		(h/2 to h)	33.66		-0.90	-25.75		
		(h to 2h)	33.66		-0.50	-14.31	-20.	
		(>h2)	33.66		-0.30	-8.58	-14.	.64 -2.52
Overhangs:		z (ft)	qz (psf)		Ср	qGCp		p = qGCp
Windward Overha	ang	8.500			0.80	22.89	•	F 400F
MWFRS Calculator Rev	_		22.30					Medeek Engineering Inc.

WIND (C&C)


Wind Analysis Method			Part 1: Low R	ise Buildings	
Basic Wind Speed (ultimate)		135.00	MPH		
Topography Factor	Kzt =	1.00		ASCE 7-10 Fig. 26.8-1	
Directionality Factor	Kd =	0.85		ASCE 7-10 Fig. 26.6-1	
Internal Pressure Coefficients	(GCpi) =	0.18	-0.18	ASCE 7-10 Table 26.11-1	
Roof Pitch		4.00	:12	18.43 DEG	
Roof Eve Height		8.500	FT		
Peak Roof Height		16.167	FT	α =	9.5
Mean Roof Height		12.334	FT	zg =	900
Terrain Exp. Category		С			

Velocity Pressure $qz = .00256KzKztKdV^2$

Height (ft) Kz qz h = 12.33 FT 0.849 **33.66**

Wall Components p = qh(GCp - GCpi)

Component	Span Length (ft.)	Width (ft.)	Trib. Area	Eff. Area
Stud	8	1.33	10.64	21.33
Panel	8	4	32.00	32.00
$A \le 10 \text{ ft}^2$	-	-	-	10.00
$A = 20 \text{ ft}^2$	-	-	-	20.00
$A = 50 \text{ ft}^2$	-	-	-	50.00
$A = 100 \text{ ft}^2$	-	-	-	100.00
$A = 200 \text{ ft}^2$	-	-	-	200.00
$A \ge 500 \text{ ft}^2$	-	-	-	500.00

Wall Coeficients taken from ASCE 7-10 Fig. 30.4-1

Wall Coefficients

Component	Eff. Area	Zone 4 Pos	Zone 4 Neg	Zone 5 Pos	Zone 5 Neg
Stud	21.33	0.94	-1.04	0.94	-1.28
Panel	32.00	0.91	-1.01	0.91	-1.22
$A \le 10 \text{ ft}^2$	10.00	1.00	-1.10	1.00	-1.40
$A = 20 \text{ ft}^2$	20.00	0.95	-1.05	0.95	-1.29
$A = 50 \text{ ft}^2$	50.00	0.88	-0.98	0.88	-1.15
$A = 100 \text{ ft}^2$	100.00	0.82	-0.92	0.82	-1.05
$A = 200 \text{ ft}^2$	200.00	0.77	-0.87	0.77	-0.94
$A \ge 500 \text{ ft}^2$	500.00	0.70	-0.80	0.70	-0.80

Wall Design Pressures (psf)

Component	Eff. Area	Zone 4 Pos	Zone 4 Neg	Zone 5 Pos	Zone 5 Neg
Stud	21.33	37.77	-41.13	37.77	-49.28
Panel	32.00	36.72	-40.09	36.72	-47.18
$A \le 10 \text{ ft}^2$	10.00	39.72	-43.09	39.72	-53.19
$A = 20 \text{ ft}^2$	20.00	37.93	-41.30	37.93	-49.61
$A = 50 \text{ ft}^2$	50.00	35.57	-38.94	35.57	-44.88
$A = 100 \text{ ft}^2$	100.00	33.78	-37.15	33.78	-41.30
$A = 200 \text{ ft}^2$	200.00	31.99	-35.36	31.99	-37.72
$A \ge 500 \text{ ft}^2$	500.00	29.62	-32.99	29.62	-32.99

Note: Pressures are limit state design pressures for strength design. Multiple by 0.6 for ASD.

Min. Pressure: The design wind pressure for C&C shall not be less than 16 psf acting in either direction normal to the surface.

Job#:

2015-035

Roof Components

p = qh(GCp - GCpi)

Roof Compon	iciito							Ρ-	- 91	,,0	Oρ	GO pr)
Component	Span Length (ft.)	Width (ft.)	Trib. Area	Eff. Area								
Truss/Rafter	42.875	2	85.75	612.76	•	- a -		a	á		a -	
Panel	8	4	32.00	32.00	-					8 8		
$A \le 10 \text{ ft}^2$	-	-	-	10.00	a	3	2	3	3	2	3	
$A = 20 \text{ ft}^2$	-	-	-	20.00								OHE -
$A = 50 \text{ ft}^2$	-	-	-	50.00				1				
$A \ge 100 \text{ ft}^2$	=	-	-	100.00				i i			100	
						2		2	2	1	2	
								1				_
						1		1			1	

Roof Coeficients taken from ASCE 7-10 Fig. 30.4-2B and Fig. 30.4-2C

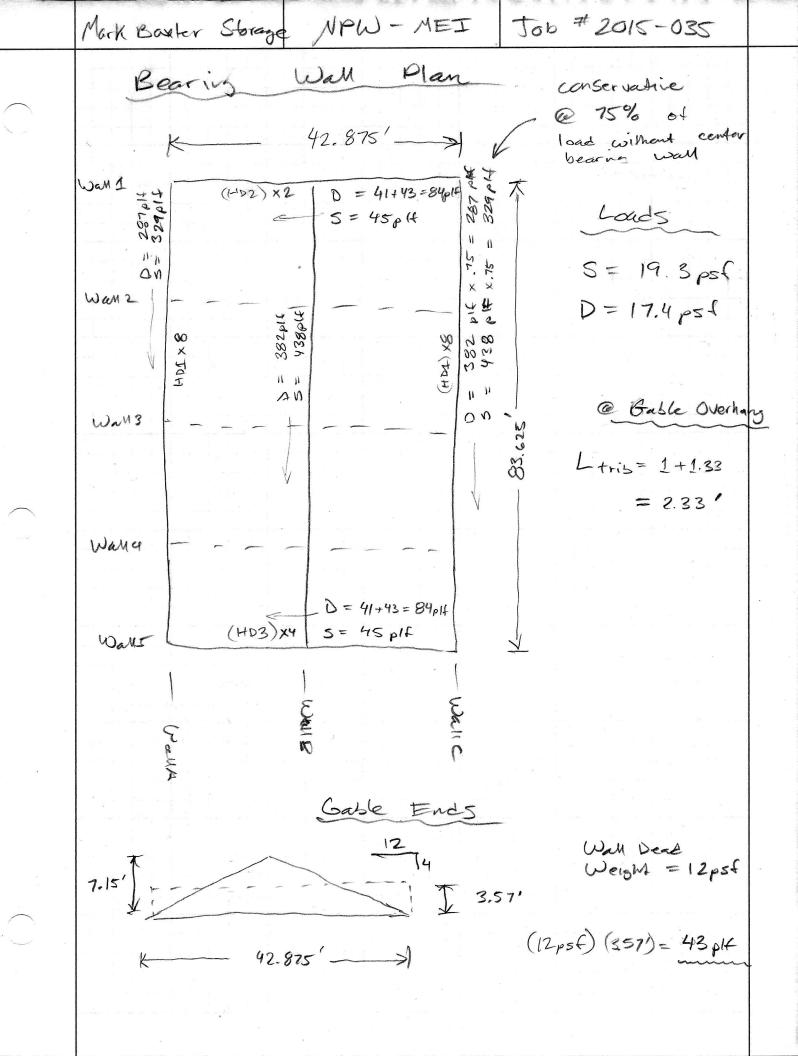
Roor Coefficients							
Component	Eff. Area	Zone 1 Pos	Zone1 Neg	Zone 2 Pos	Zone 2 Neg	Zone 3 Pos	Zone 3 Neg
Truss/Rafter	612.76	0.30	-0.80	0.30	-1.20	0.30	-2.00
Panel	32.00	0.40	-0.85	0.40	-1.45	0.40	-2.30
$A \le 10 \text{ ft}^2$	10.00	0.50	-0.90	0.50	-1.70	0.50	-2.60
$A = 20 \text{ ft}^2$	20.00	0.44	-0.87	0.44	-1.55	0.44	-2.42
$A = 50 \text{ ft}^2$	50.00	0.36	-0.83	0.36	-1.35	0.36	-2.18
$A \ge 100 \text{ ft}^2$	100.00	0.30	-0.80	0.30	-1.20	0.30	-2.00
Roof Design P	ressures	(psf)					
Component	Eff. Area	Zone 1 Pos	Zone1 Neg	Zone 2 Pos	Zone 2 Neg	Zone 3 Pos	Zone 3 Neg
Truss/Rafter	612.76	16.16	-32.99	16.16	-46.46	16.16	-73.39

Component	Eff. Area	Zone 1 Pos	Zone1 Neg	Zone 2 Pos	Zone 2 Neg	Zone 3 Pos	Zone 3 Neg
Truss/Rafter	612.76	16.16	-32.99	16.16	-46.46	16.16	-73.39
Panel	32.00	19.49	-34.66	19.49	-54.79	19.49	-83.38
$A \le 10 \text{ ft}^2$	10.00	22.89	-36.36	22.89	-63.29	22.89	-93.59
$A = 20 \text{ ft}^2$	20.00	20.87	-35.34	20.87	-58.22	20.87	-87.51
$A = 50 \text{ ft}^2$	50.00	18.19	-34.00	18.19	-51.52	18.19	-79.47
$A = 100 \text{ ft}^2$	100.00	16.16	-32.99	16.16	-46.46	16.16	-73.39

Roof Coefficients	(Overhang)
-------------------	------------

Component	Eff. Area	Zone 1 Pos	Zone1 Neg	Zone 2 Pos	Zone 2 Neg	Zone 3 Pos	Zone 3 Neg
Truss/Rafter	612.76	0.30	-0.80	0.30	-2.20	0.30	-2.50
Panel	32.00	0.40	-0.85	0.40	-2.20	0.40	-3.09
$A \le 10 \text{ ft}^2$	10.00	0.50	-0.90	0.50	-2.20	0.50	-3.70
$A = 20 \text{ ft}^2$	20.00	0.44	-0.87	0.44	-2.20	0.44	-3.34
$A = 50 \text{ ft}^2$	50.00	0.36	-0.83	0.36	-2.20	0.36	-2.86
$A \ge 100 \text{ ft}^2$	100.00	0.30	-0.80	0.30	-2.20	0.30	-2.50

Roof Design Pressures	(Overhang)	(psf)
itooi besigii i iessaies	(Overnang)	(Poi


Component	Eff. Area	Zone 1 Pos	Zone1 Neg	Zone 2 Pos	Zone 2 Neg	Zone 3 Pos	Zone 3 Neg
Truss/Rafter	612.76	16.16	-32.99	16.16	-80.12	16.16	-90.22
Panel	32.00	19.49	-34.66	19.49	-80.12	19.49	-110.21
$A \le 10 \text{ ft}^2$	10.00	22.89	-36.36	22.89	-80.12	22.89	-130.62
$A = 20 \text{ ft}^2$	20.00	20.87	-35.34	20.87	-80.12	20.87	-118.46
$A = 50 \text{ ft}^2$	50.00	18.19	-34.00	18.19	-80.12	18.19	-102.38
$A = 100 \text{ ft}^2$	100.00	16.16	-32.99	16.16	-80.12	16.16	-90.22

Width of	Zones	2,3 and 5
----------	-------	-----------

smaller of:	0.1 x	42.88 =	4.29 ft	(controls)	a = 4.2875 ft
	0.4 x	12.33 =	4.93 ft		
not less than:	0.04 x	42.88 =	1.72 ft		
		or	3 ft		

Note: Pressures are limit state design pressures for strength design. Multiple by 0.6 for ASD.

Min. Pressure: The design wind pressure for C&C shall not be less than 16 psf acting in either direction normal to the surface.

Job#: 2015-035

Footings and Foundations

Check footing soil pressure at highest (vertically) loaded section of wall excluding point loads. From previous sections and by inspection one of the most critically loaded walls is at Wall Line A.

(plf)	Dead Load	Floor Live	Roof Live	Roof Snow
Roof	287	0	0	329
Wall	96	0	0	0
Floor	0	0	0	0
Stemwall	0	0	0	0
Totals	383	0	0	329

Wall DL =	12	psf
Wall Hgt. =	8	ft
tribfloor =	0.0	ft
Stem Width =	0	in
Stem Hgt. =	0	in
Oconc =	150	pcf

Assume footing width and soil bearing:

		Footing Width =	12	ın
		Soil Bearing Pressure =	1500	psf
383 plf		ρsoil =	100	pcf
712 plf	(governs)	Soil Depth Above Ftg.	0	in
630 plf		Footing Depth =	18	in
	712 plf	712 plf (governs)	$Soil \ Bearing \ Pressure = \\ 383 \ plf \qquad \qquad \rho_{Soil} = \\ 712 \ plf \qquad (governs) \qquad Soil \ Depth \ Above \ Ftg.$	$ Soil \ Bearing \ Pressure = 1500 \\ 383 \ plf $

Eff. Allowable SBP Qe = 1,275 psf

Req. Soil Bearing Pressure = 712 psf < 1,275 psf — > OK

Use 12" x 18" x cont. turned down thickened edge slab footing with (2) #4 bars cont. horizontal top and bottom

From previous sections and by inspection one of the most critically loaded walls is at Wall Line B.

(plf)	Dead Load	Floor Live	Roof Live	Roof Snow
Roof	382	0	0	438
Wall	96	0	0	0
Floor	0	0	0	0
Stemwall	0	0	0	0
Totals	478	0	0	438

psf	12	Wall DL =
ft	8	Wall Hgt. =
ft	0.0	tribfloor =
in	0	Stem Width =
in	0	Stem Hgt. =
ncf	150	Ocone -

Assume footing width and soil bearing:

		Footing width =	10	ın
		Soil Bearing Pressure =	1500	psf
478 plf		ρsoil =	100	pcf
916 plf	(governs)	Soil Depth Above Ftg.	0	in
807 plf		Footing Depth =	12	in
	916 plf	916 plf (governs)	Soil Bearing Pressure = 478 plf ρ_{Soil} = 916 plf (governs) Soil Depth Above Ftg.	Soil Bearing Pressure = 1500 478 plf $\rho_{Soil} = 100$ 916 plf (governs) Soil Depth Above Ftg. 0

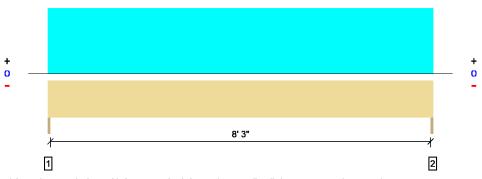
Eff. Allowable SBP Qe = 1,350 psf

Cooting Width

Req. Soil Bearing Pressure = **687** psf < 1,350 psf \longrightarrow **OK**

Use 16" x 12" x cont. thickened slab footing with (2) #4 bars cont. horizontal.

Pad Footing at HD1 Trimmer: Stemwall Height: 16 in 12 in Stemwall Footing Width: Pmax = 2714 lbs Assume square footing: 0 in Req. Bearing (Stemwall Ftg. Only) = P/A = / 2,714 2.00 1,357 psf Req. Bearing (Sq. Ftg. Only) = P/A = 0.00 / N/A 2,714 = 1,357 psf Req. Bearing (Combined) = P/A = 2,714 2.00 Req Soil Bearing = 1,357 psf < 1,500 psf OK



01: FLOOR1						
Member Name	Results	Current Solution	Comments			
HD1	Passed	3 Piece(s) 2 x 10 Douglas Fir-Larch No. 2				
HD2	Passed	3 Piece(s) 2 x 10 Douglas Fir-Larch No. 2				
HD3	Passed	2 Piece(s) 2 x 10 Douglas Fir-Larch No. 2				

Forte Software Operator	Job Notes	
Nathaniel Wilkerson Medeek Engineering Inc. (425) 741-5555 nathan@medeek.com	Job#: 2015-035 Mark Baxter Pacific Beach WA 98571	

3 piece(s) 2 x 10 Douglas Fir-Larch No. 2

Overall Length: 8' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2714 @ 0	4219 (1.50")	Passed (64%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2142 @ 10 3/4"	5744	Passed (37%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5767 @ 4' 3"	6088	Passed (95%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.081 @ 4' 3"	0.283	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.158 @ 4' 3"	0.425	Passed (L/646)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Bracing (Lu): All compression edges (top and bottom) must be braced at 7' 4 9/16" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.
- Applicable calculations are based on NDS 2005 methodology.

	Bearing Length			Bearing Length Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	1316	1398	2714	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	1316	1398	2714	None

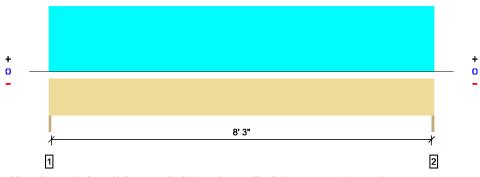
Loads	Location	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PLF)	0 to 8' 6"	N/A	287.0	329.0	ROOF
2 - Uniform (PSF)	0 to 8' 6"	1'	12.0	-	EXT. WAII

Member Notes

8x7 Garage Door

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.


The product application, input design loads, dimensions and support information have been provided by Nathaniel P. Wilkerson PE

°^		
INMINTZI IZ	RLE EOREST	DA IVILLIVITIVE
SUSTAINAI	DEL I OKESI	KI HAHIWHAT

Forte Software Operator	Job Notes	
Nathaniel Wilkerson Medeek Engineering Inc. (425) 741-5555 nathan@medeek.com	Job#: 2015-035 Mark Baxter Pacific Beach WA 98571	

3 piece(s) 2 x 10 Douglas Fir-Larch No. 2

Overall Length: 8' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1205 @ 0	4219 (1.50")	Passed (29%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	800 @ 10 3/4"	4496	Passed (18%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	2154 @ 4' 3"	4765	Passed (45%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.011 @ 4' 3"	0.283	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.070 @ 4' 3"	0.425	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Bracing (Lu): All compression edges (top and bottom) must be braced at 8' 6" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.
- Applicable calculations are based on NDS 2005 methodology.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	1014	191	1205	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	1014	191	1205	None

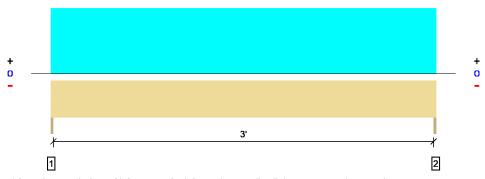
Loads	Location	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PLF)	0 to 8' 6"	N/A	84.0	45.0	ROOF
2 - Uniform (PSF)	0 to 8' 6"	12'	12.0	-	EXT. WAII

Member Notes

8x8 Garage Door

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.


The product application, input design loads, dimensions and support information have been provided by Nathaniel P. Wilkerson PE

°^			
B	SUSTAINABLE	EODESTRY	INITIATIVE
60	JOJIAIINABLE	TORESTRI	HALLALIA

Forte Software Operator	Job Notes	
Nathaniel Wilkerson Medeek Engineering Inc. (425) 741-5555 nathan@medeek.com	Job#: 2015-035 Mark Baxter Pacific Beach WA 98571	

2 piece(s) 2 x 10 Douglas Fir-Larch No. 2

Overall Length: 3' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	241 @ 0	2813 (1.50")	Passed (9%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	108 @ 10 3/4"	3830	Passed (3%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	195 @ 1' 7 1/2"	4059	Passed (5%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.000 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.001 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System: Wall

Member Type: Header

Building Use: Residential

Building Code: IBC

Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Bracing (Lu): All compression edges (top and bottom) must be braced at 3' 3" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.
- Applicable calculations are based on NDS 2005 methodology.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	167	73	240	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	167	73	240	None

Loads	Location	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PLF)	0 to 3' 3"	N/A	84.0	45.0	ROOF
2 - Uniform (PSF)	0 to 3' 3"	1'	12.0	-	EXT. WAII

Member Notes

3068 Door

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.

The product application, input design loads, dimensions and support information have been provided by Nathaniel P. Wilkerson PE

°^			
B	SUSTAINABLE	EODESTRY	INITIATIVE
60	JOJIAIINABLE	TORESTRI	HALLALIA

Forte Software Operator	Job Notes	
Nathaniel Wilkerson Medeek Engineering Inc. (425) 741-5555 nathan@medeek.com	Job#: 2015-035 Mark Baxter Pacific Beach WA 98571	

				Job#:	2015-035
STUD WALL CALCULATION	ONS			Location:	WALLB
Stud Width (dy)	1.50	in	Vertical Loads		
Stud Depth (dx)	3.50	in	Wall LL (wLL)	438	plf
Stud Length (L)	8.00	ft	Wall DL (wDL)	382	plf
Stud Spacing	16	in	Wall DL (wTL)	820	plf
Stud Species and Grade	2X4 [OF Stud	Trib. Length	1.33	ft
Top/Sill Plt. Species	HF		Pc	1093.33	lbs
Design Values			Lateral Loads (Wind MWI	EDC)	
Fb	700	nei	Wind Load (windward wall)		nef
Fc	850		MWFRS Wind Load ASD	9.60	
Fc⊥	405		Wind Atrib	10.67	
E	1,400,000	•	W	10.67	
		•			
Emin	510,000	psi	W	12.80	рп
CF_b	1.10		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
CF_c	1.05	. 2	Lateral Loads (Wind C&C		
A	5.25		Wind Load (Zone 4)	16.00	
Sx	3.06		CC Wind Load ASD	9.60	
lx	5.36	in ⁴	W	102.40	
Ct_c	1.00		W	12.80	plf
CM_c	1.00				
Ci_c	1.00		Load Case 2: Lateral Loa	ds Only (Wind	I C&C)
			Mmax	102.40	ft-lbs
Load Case 1: Gravity Load	ds Only			1228.80	in-lbs
ly (unbraced length)	1.0	ft	fbx	401.24	psi
CD	1.15	(Snow Load)	CSI (bending C&C)	0.28	ОК
(le/d)y	8.00				
(le/d)x	27.43	(governs)	Load Case 3: Gravity Loa	ds and Latera	l Loads
E'min	510,000	psi	CD	1.60	(Wind/Seismic)
FcE	557.23	psi	Mmax	102.40	ft-lbs
Fc*	1026.38	psi		1228.80	in-lbs
С	0.80	sawn lumber	CL	1.00	
FcE/Fc*	0.543		Cr	1.15	@ 16 O/C
1 + FcE/Fc*/2c	0.964		Fbx'	1409.95	psi
Ср	0.463		fbx	401.24	•
Fc'	475.26	nsi	CSI (bending MWFRFS)		ок
fc	208.25	•	cor (sonanig mirri in c)	0.20	
CSI (axial)	0.44		Combined Stress		
ooi (uxiui)	0.44		(re-evaluate compression v	values with CD	- 16)
Bearing on Stud Wall Plat	·06		FcEx	557.23	,
-	1.50	in	FcE		•
lb Cb			Fc*	557.23	
		(conservative)		1428.00	
Fc⊥'	405.00	•	C = /5 *		sawn lumber
fc⊥	208.25	•	FcE/Fc*	0.390	
CSI (bearing)	0.51	OK	1 + FcE/Fc*/2c	0.869 0.352	
Deflection			Cp Fc'	502.63	
E'	1,400,000	psi			•
_ ΔWIND (.42C&C)*	0.11		$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} f \end{pmatrix}$		
L/d**	872	OK $\left \frac{J_c}{J_c} \right $	$\left \frac{1}{a} \right \left \frac{J_{bx}}{a} \right $	= 0.63	ОК
*IBC 2015 Sec. 1604.3	012	(F_c)	$+\left(\frac{1}{1-\frac{f_c}{F_{ex}}}\right)\left(\frac{f_{bx}}{F_{bx}}\right)$	0.00	J.,
**IRC 2015 Sec. 301.7		(()	CEX / CA/	Load Case:	LCMAX
			*I C****	4000/ 6 111	,

*LCMAX takes 100% of all loads for axial and bending.

Location: Wall B

Specification: Use 2X4 DF Stud Grade @ 16" o/c

Rev. 1.3.1 - 06/23/2015 Copyright ® 2015 - Medeek Engineering Inc.

				Job#:	2015-035
STUD WALL CALCULATION	ONS			Location:	WALLA
Stud Width (dy)	1.50	in	Vertical Loads		
Stud Depth (dx)	5.50	in	Wall LL (wll)	329	plf
Stud Length (L)	8.00	ft	Wall DL (wDL)	287	plf
Stud Spacing	16	in	Wall DL (wTL)	616	plf
Stud Species and Grade	2X6 E	OF Stud	Trib. Length	1.33	ft
Top/Sill Plt. Species	HF		Pc	821.33	lbs
Dosign Values			Latoral Loads (Wind MWER	·e/	
Design Values Fb	700	noi	Lateral Loads (Wind MWFR Wind Load (windward wall)		nof
	700	•	MWFRS Wind Load ASD	28.95	•
Fc	850			17.37 10.67	
Fc⊥	405	•	Wind Atrib		
E	1,400,000	•	W	185.28	
Emin	510,000	psi	W	23.16	ріт
CF_b	1.00				
CF_c	1.00	2	Lateral Loads (Wind C&C)		
A	8.25		Wind Load (Zone 4)	41.13	
Sx	7.56		CC Wind Load ASD	24.68	
lx	20.80	in⁴	W	263.23	
Ct_c	1.00		W	32.90	plf
CM_c	1.00				
Ci_c	1.00		Load Case 2: Lateral Loads	Only (Wind	C&C)
			Mmax	263.23	ft-lbs
Load Case 1: Gravity Load	ds Only			3158.78	in-lbs
ly (unbraced length)	1.0	ft	fbx	417.69	psi
CD	1.15	(Snow Load)	CSI (bending C&C)	0.33	ok
(le/d)y	8.00				
(le/d)x	17.45	(governs)	Load Case 3: Gravity Loads	and Latera	l Loads
E'min	510,000	psi	CD	1.60	(Wind/Seismic)
FcE	1376.02	psi	Mmax	185.28	ft-lbs
Fc*	977.50	psi		2223.36	in-lbs
С	0.80	sawn lumber	CL	0.99	
FcE/Fc*	1.408		Cr	1.15	@ 16 O/C
1 + FcE/Fc*/2c	1.505		Fbx'	1278.76	psi
Ср	0.794		fbx	294.00	psi
Fc'	776.42	psi	CSI (bending MWFRFS)	0.23	ok .
fc	99.56	•	3		
CSI (axial)	0.13		Combined Stress		
oor (arman)	• • • • • • • • • • • • • • • • • • • •		(re-evaluate compression val	ues with CD	= 1.6)
Bearing on Stud Wall Plat	es		FcEx	1376.02	
lb	1.50	in	FcE	1376.02	•
Cb		(conservative)	Fc*	1360.00	
Fc⊥'	405.00	,	C		sawn lumber
		•	FcE/Fc*	1.012	Sawii idilibei
fc⊥ CSI (hearing)	99.56	•			
CSI (bearing)	0.25	OK .	1 + FcE/Fc*/2c Cp	1.257 0.695	
Deflection			Fc'	945.22	psi
E'	1,400,000	psi			•
ΔWIND (.42C&C)*	0.07		1)(1		
L/d**	1317	OK $\left \frac{J_c}{J_c} \right + \left \frac{J_c}{J_c} \right $	$\frac{1}{a} \left\ \frac{f_{bx}}{a} \right\ =$	0.26	ок
*IBC 2015 Sec. 1604.3	1317	(F_c)	$\frac{1}{1 - \frac{f_c}{F_{cFx}}} \left(\frac{f_{bx}}{F_{bx}'} \right) =$	0.20	
**IRC 2015 Sec. 301.7			· cEx / \ Ox /	Load Case:	LCMAX
					

*LCMAX takes 100% of all loads for axial and bending.

Location: Wall A

Specification: Use 2X6 DF Stud Grade @ 16" o/c

Rev. 1.3.1 - 06/23/2015

Copyright $\ensuremath{\$}$ 2015 - Medeek Engineering Inc.

Job#: 2015-035

TRUSS UPLIFT CALCULATIONS

 Out-to-out Span
 42.875 ft
 Load Combo: .6D + .6W

 Overhang Left
 1.33 ft

 Overhang Right
 1.33 ft

 Truss O/C Spacing
 2 ft

 Roof Pitch
 4 :12
 18.43 Deg.

Dead Loads

 BCDL
 10 psf
 SF (Slope Factor) =
 1.05

 TCDL
 7 psf
 Adj. TCDL =
 7.38 psf

 Wind Loads (MWFRS)

 Wind (0 to h/2)
 31.81 psf

 Wind (0 to h/2 @ overhang)
 25.75 psf

 Wind (overhang underside)
 22.89 psf

Moment Summation at Truss Left Bearing:

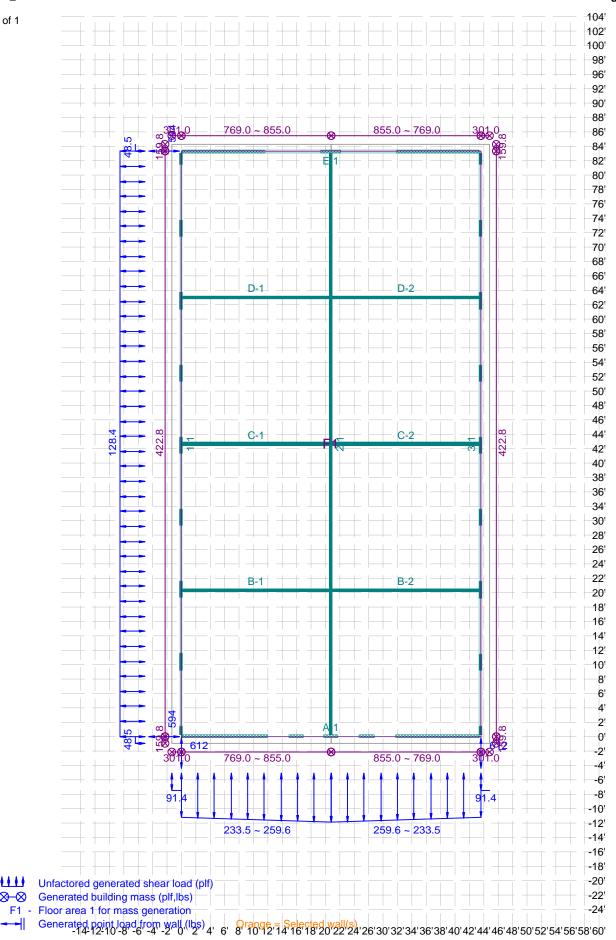
	Force	Moment-Arm	Moment
BCDL	-514.5 lbs	21.4 ft	-11029.6 ft-lbs
TCDL	-379.6 lbs	21.4 ft	-8138.3 ft-lbs
TCDL (right overhang)	-11.8 lbs	43.5 ft	-512.7 ft-lbs
TCDL (left overhang)	-11.8 lbs	-0.7 ft	7.8 ft-lbs
Wind (0 to h/2)	1636.6 lbs	21.4 ft	35085.1 ft-lbs
Wind (right overhang)	77.6 lbs	43.5 ft	3380.0 ft-lbs
Wind (left overhang)	77.6 lbs	-0.7 ft	-51.6 ft-lbs
Totals	874.2 lbs	150.1	18740.6 ft-lbs

Uplift Right 437.1 lbs
Uplift Left 437.1 lbs

Use H1 Hurricane Ties for all other rafters and trusses.

H1 Allowable 585 lbs
H8 Allowable 745 lbs
H10A Allowable 1140 lbs
LGT2 Allowable 2050 lbs
LGT3 Allowable 3685 lbs

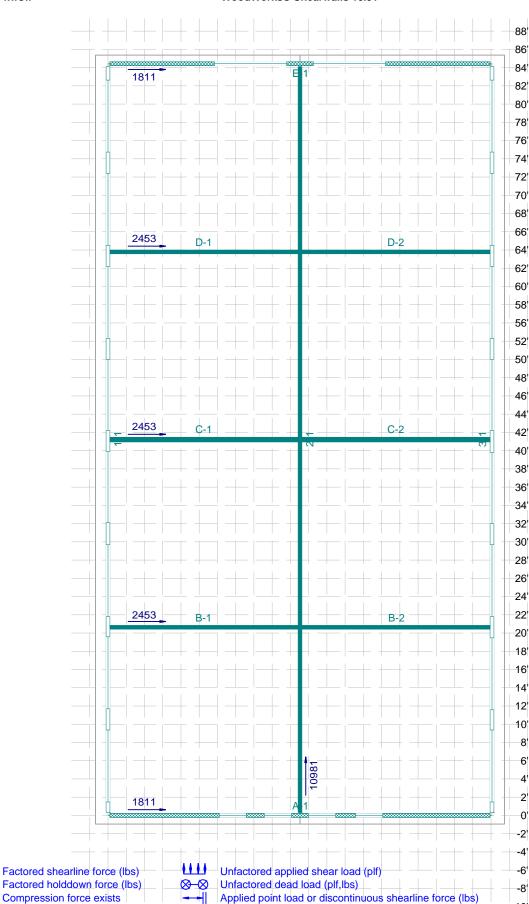
Note: Uplift allowable values are for DF/SP lumber and have been increased for wind or seismic (1.6).


2015-035_REV3.wsw

⊗--⊗

WoodWorks® Shearwalls 10.31

Aug. 5, 2015 21:19:46


2015-035_REV4.wsw

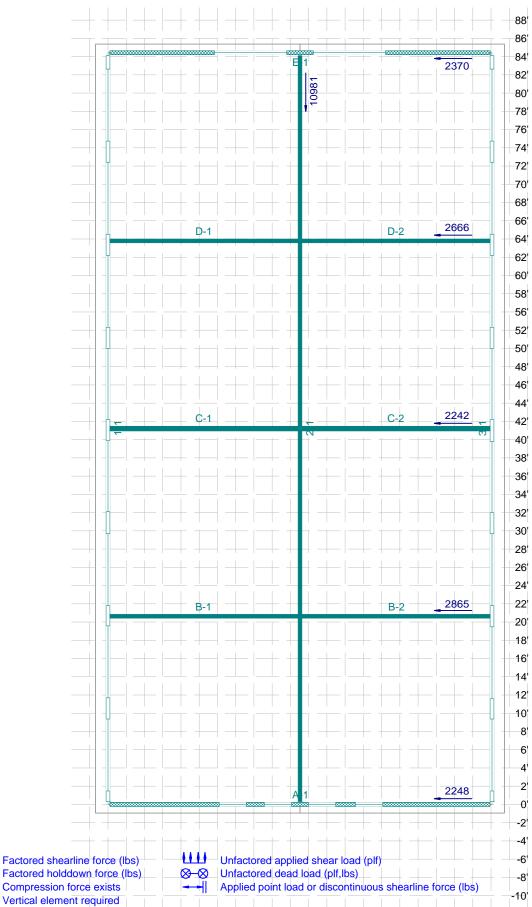
• C

Level 1 of 1

WoodWorks® Shearwalls 10.31

Aug. 5, 2015 21:22:09

-10'

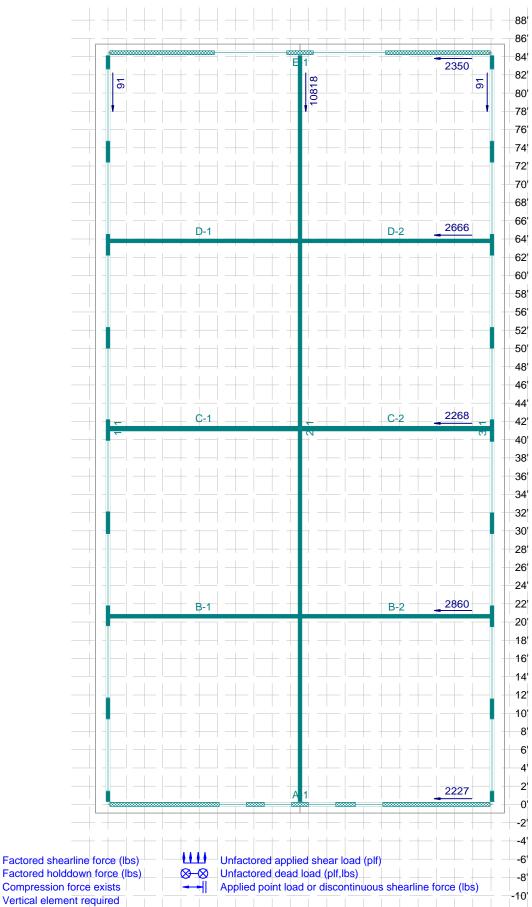

2015-035_REV4.wsw

• C

WoodWorks® Shearwalls 10.31

Aug. 5, 2015 21:22:09

Level 1 of 1


2015-035_REV3.wsw

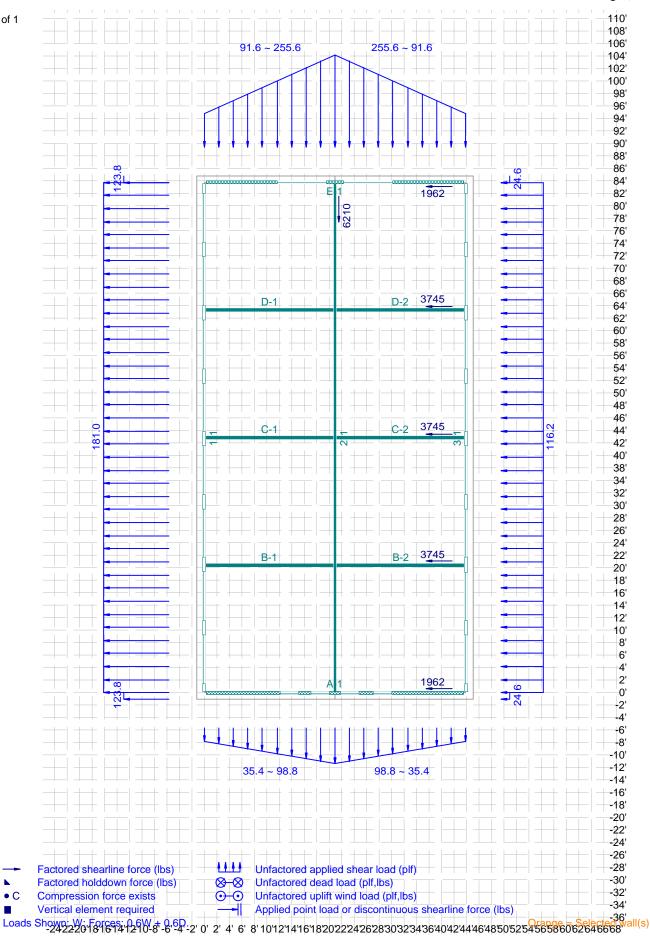
• C

WoodWorks® Shearwalls 10.31

Aug. 5, 2015 21:01:17

Level 1 of 1

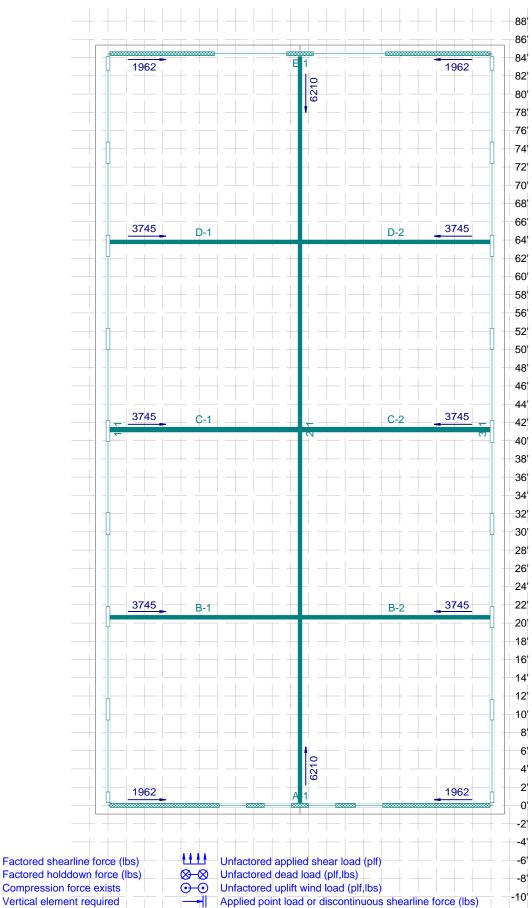
WoodWorks® Shearwalls


SOFTWARE FOR WOOD DESIGN

2015-035_REV4.wsw

WoodWorks® Shearwalls 10.31

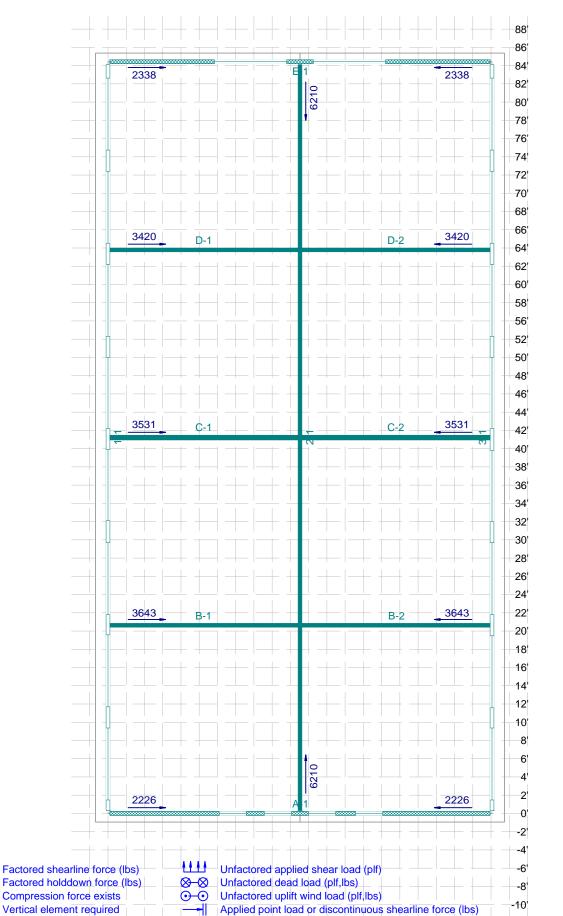
Aug. 5, 2015 21:22:09


2015-035_REV4.wsw

• C

WoodWorks® Shearwalls 10.31

Aug. 5, 2015 21:22:09


2015-035_REV4.wsw

• C

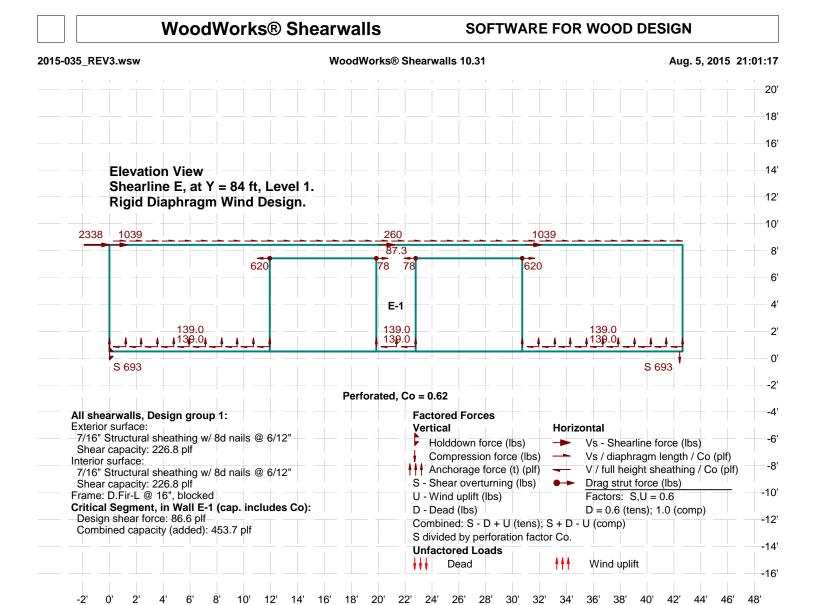
Level 1 of 1

WoodWorks® Shearwalls 10.31

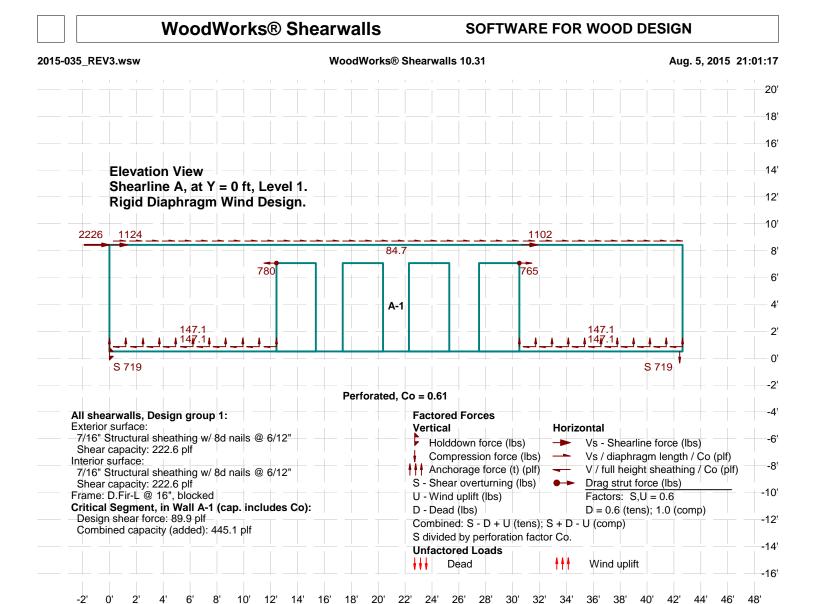
Aug. 5, 2015 21:22:09

-10'

2015-035_REV3.wsw


• C

Level 1 of 1


WoodWorks® Shearwalls 10.31

Aug. 5, 2015 21:01:17

88' 86' 84' 2338 2338 82 43 6124 43 80' 78' 76' 74 72 70' 68' 66' 3422 3422 D-1 D-2 64 62' 60' 58' 56' 52 50' 48' 46' 44 3531 3531 C-1 C-2 42' 40' 38 36 34 32 30' 28' 26' 24' 3642 3642 22' B-1 B-2 20' 18' 16 14' 12' 10' 8 6' 6124 4 43 43 2 2226 0' -2' -4' -6' Factored shearline force (lbs) Unfactored applied shear load (plf) Factored holddown force (lbs) $\otimes - \otimes$ Unfactored dead load (plf,lbs) -8' **⊙-⊙** Unfactored uplift wind load (plf,lbs) Compression force exists

West East

West East

Job#: 2015-035

SHEARWALL SUMMARY

SWL	Wind Flex.	Wind Rigid	Wind Max.	Wind Avg.	Description
1	1,962	2,338	2,338	2,150	PERFORATED - Co = 0.62
2	3,745	3,420	3,745	3,583	SEGMENTED
3	3,745	3,531	3,745	3,638	SEGMENTED
4	3,745	3,643	3,745	3,694	SEGMENTED
5	1,962	2,226	2,226	2,094	PERFORATED - Co = 0.61
В	6,210	6,210	6,210	6,210	SEGMENTED

SWL	Seismic Flex.	Seismic Rigid	Seismic Max.	Seismic Avg.	Description
1	1,811	2,370	2,370	2,091	PERFORATED - Co = 0.62
2	2,453	2,666	2,666	2,560	SEGMENTED
3	2,453	2,242	2,453	2,348	SEGMENTED
4	2,453	2,865	2,865	2,659	SEGMENTED
5	1,811	2,248	2,248	2,030	PERFORATED - Co = 0.61
В	10,981	10,981	10,981	10,981	SEGMENTED

Comments: Gable Trusses above SWL1, SWL2 capable of lateral load from shearwall (sheathed).

Interior sheathing of ceiling diaphragm distributes loads into interior shearwalls.

Design Method	Allowable Stress Design (ASD) ▼
Connection Type	Lateral loading ▼
Fastener Type	Bolt ▼
Loading Scenario	Single Shear - Concrete Main Member ▼

Main Member Type	Concrete ▼
Bolt Embedment Depth in Concrete	
Main Member: Angle of Load to Grain	o
Side Member Type	Northern Species ▼
Side Member Thickness	1.5 in. ▼
Side Member: Angle of Load to Grain	o
Fastener Diameter	3/8 in. ▼
Load Duration Factor	C_D = 1.6 ▼
Wet Service Factor	C_M = 1.0 ▼
Temperature Factor	C_t = 1.0 ▼

Connection Yield Modes

Im	4500 lbs.
Is	878 lbs.
II	1483 lbs.
IIIm	1686 lbs.
IIIs	540 lbs.
IV	617 lbs.

Adjusted ASD Capacity	540 lbs.
-----------------------	----------

- Bolt bending yield strength of 45,000 psi is assumed.
- The Adjusted ASD Capacity is only applicable for bolts with adequate end distance, edge distance and spacing per NDS chapter 11.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to assure that the information reflects the state-of-the-art, neither the American Wood Council nor its members assume any responsibility for any particular design prepared from this on-line Connection Calculator. Those using this on-line Connection Calculator assume all liability from its use.

The Connection Calculator was designed and created by Cameron Knudson, Michael Dodson and David Pollock at Washington State University. Support for development of the Connection Calculator was provided by American Wood Council.

Design Method	Allowable Stress Design (ASD) ▼
Connection Type	Lateral loading ▼
Fastener Type	Bolt ▼
Loading Scenario	Single Shear - Concrete Main Member ▼

Main Member Type	Concrete ▼
Bolt Embedment Depth in Concrete	
Main Member: Angle of Load to Grain	0
Side Member Type	Northern Species ▼
Side Member Thickness	1.5 in. ▼
Side Member: Angle of Load to Grain	90
Fastener Diameter	3/8 in. ▼
Load Duration Factor	C_D = 1.6 ▼
Wet Service Factor	C_M = 1.0 ▼
Temperature Factor	C_t = 1.0 ▼

Connection Yield Modes

Im	3600 lbs.
Is	387 lbs.
II	1057 lbs.
IIIm	1152 lbs.
IIIs	303 lbs.
IV	398 lbs.

Adjusted ASD Capacity	303 lbs.
-----------------------	----------

- Bolt bending yield strength of 45,000 psi is assumed.
- The Adjusted ASD Capacity is only applicable for bolts with adequate end distance, edge distance and spacing per NDS chapter 11.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to assure that the information reflects the state-of-the-art, neither the American Wood Council nor its members assume any responsibility for any particular design prepared from this on-line Connection Calculator. Those using this on-line Connection Calculator assume all liability from its use.

The Connection Calculator was designed and created by Cameron Knudson, Michael Dodson and David Pollock at Washington State University. Support for development of the Connection Calculator was provided by <u>American Wood Council</u>.

SHEAR WALL	CALCULATOR	;	SWL1	Vs =	2370 II	os	Vw =	2338	lbs		Job#:	2015-035
				(seismic)			(wind)					
SWL Name	Shear (lbs)	Wall Length (ft)	SWL Length	Unit Shear (plf)	Wall Hgt. (ft)	Uplift (lbs)	Holdown	Anchor Bolt	Embedment	Studs	Panels	
SWL1	2,370	42.9	42.9	142.2	8.1	1,152	DTT2Z	THD501200H	5	(2) 2x6	1	
PERF	Seismic Load Gov	/erns	Co =	0.62	ΣLi (ft) =	26.88	bs =	2.75	ft	DF No. 2		
Shearwall Shea	athing Specificat	<u>ion:</u>		Nominal unit she	ar capacities from	SDPWS Table 4.	.3A (Wood Frame	Shear Walls)				
$v_s =$	142	plf	<	v _{allow} =	163 p	olf \longrightarrow	OK	(seismic)	Edge N	Nail Spacing =	= (in in
$v_w =$	140	plf	<	$V_{allow} =$	335 p	olf \longrightarrow	OK	(wind)	Sheathing	g both sides =	= NC)
									Sht. Pane	el Thickness =	7/16	in in
Use 7/16 OSB/	PLY (APA Grad	e 24/16) w/ 8d na	ails @ 6" o/c ed	lges, 12" o/c field	d, blocking require	ed.			Fa	stener Type =	: 80	d
									Min. Pane	el Length: bs =	2.7	5 ft
	Max. AR: h/bs = 2								2.9	$5 \rightarrow 0$ K		
Anchor Bolt Sp	pacing							Max. A	R Seismic Redu	iction: 2bs/h =	0.68	3

Anchor Bolt Spacing

Since we cannot control species of pressure treated sill plate assume weakest species from NDS 2012 Table 11E for anchor bolts (Northern Species G = 0.35):

Sill Plate:	(1)-2x	Out-of-Plane Seismic		$F_p = 0.4 S_{DS} k_a I_e W_p$	Out-of-Plane Wind	(MWFRS)
AB DIA =	0.5 in	WDL =	12 psf	$I_p = 0.45_{DS} \kappa_a I_e V_p$	Ww=	28.95 psf
Zpara =	530 lbs	SDS =	0.984 g	ASCE 7-10 Sec. 12.11.2	Ltrib =	4.05 ft
Zperp =	290 lbs	le =	1.0		Vwperp is given as the max	c. MWFRS wind force on the bottom half
Applying adjustn	nent factors:	ka =	1.0 (concrete	e is rigid)	of an exterior wall.	
CD =	1.6 (wind or seismic)	Wall Hgt. =	8.1 ft		$V_{wperp} =$	3,016 lbs
Zpara =	848 lbs	ρ =	1.0 (out-of-p	lane)		
Zperp =	464 lbs	Vsperp is given as the seism	ic force of half the dead	d weight of the wall.	Wind Load Governs:	
		V _{sperp} =	574 lbs		$V_{perp} =$	3,016 lbs

AB Spacing	V (lbs)	# of Bolts	Spacing (ft)
Perp. Load	3,016	6.5	4.1
Para. Load	2,370	2.8	9.6

La =	26.9 ft	La = available wall length for anchor bolts
LISA 1/2" DIΔ a	nchar halts 7" min	embedment /w 3"v3"v1/4" washers @ 48" o/c snacing all

A35 Framing Angle Spacing

Provide full depth blocking with A35 clips to top plt. per plan.

Lac =	42.9	ft (available o	collector length)
Fallow =	600	lbs	(F1 direction)
Unit Shear =	55.3	plf	
Spacing =	10.9	ft	

7/16" OSB sheathing on ceiling provides adequate connection, A35 angle clips not required.

Use 1/2" DIA anchor bolts, 7" min. embedment /w 3"x3"x1/4" washers @ 48" o/c spacing	all
of Wall 1.	

<u>Deflection</u>	(based on strength-level seismic	forces)	Panel #	b (ft)	Δs	
$V_u =$	199.1 plf		1	42.875	0.09	in
E =	1,600,000 psi		2	0		in
A =	16.5 in ²		3	0		in
Gt =	83,500 plf (Table	C4.2.2A)	4	0		in
da =	0.128 in (Simpso	n Holdown)	5	0		in
en =	0.0049 in (Table 0	C4.2.2D)		Max. Defl.	0.0	19 in
nail spacing =	6 in					
Sht. both sides =	NO		Cd =	4		
		ASCE 7-10	Δ =	0.35 ir	า	

(Table 12.12-1)

∆limit =

General Notes:

- 1. For unblocked shearwalls w/ studs @ 16" o/c capacity is reduced by 0.6.
- 2. All stemwall foundations walls with HDU8 or greater holdown (anchor bolt ≥ 7/8" DIA) shall be 8" min. thickness.
- 3. Uplift on holdowns calculated with dead load counter action neglected (conservative).
- 4. Where the required nominal unit shear capacity on either side of a shear wall exceeds 700 plf in SDC D framing members at adjacent panel edges shall be 3X or double 2X.
- 6. All holdowns over TJI floor, use CNW coupler nut and threaded rod for extension. Solid squash blocks beneath all shearwall chords equal to chord cross section.

1.944 in \longrightarrow **OK**

bearing on wall Flates		
Top/Sill Plt. Species	HF	
Fc⊥	405	psi
Ct_c⊥	1.00	
CM_c⊥	1.00	
Cb	1.00	(1.125)
Fc⊥'	405.00	psi
Ab	16.50	in ²
Pc	1264	lbs
fc⊥	77	psi
CSI (bearing)	0.19	ightarrow ok
Chord in Tension	(DF No. 2)	
Ft	575	psi
CM_t	1.00	
Ct_t	1.00	
Ci_t	1.00	
CD	1.60	(seismic)
CF_t	1.30	
Ft'	1196	psi
An	16.50	in ²
ft	70	psi
••		
CSI (tension)		\rightarrow ok
	0.06 (DF No. 2)	→ ок
CSI (tension)	0.06	→ ок
CSI (tension) Chord in Compression	0.06 (DF No. 2)	→ ок
CSI (tension) Chord in Compression Fc	0.06 (DF No. 2) 1350	→ ок
CSI (tension) Chord in Compression Fc CM_c	0.06 (DF No. 2) 1350 1.00	→ ок
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD	0.06 (DF No. 2) 1350 1.00 1.00 1.00	→ ок
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c	0.06 (DF No. 2) 1350 1.00 1.00 1.60 1.10	→ oĸ psi
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x	0.06 (DF No. 2) 1350 1.00 1.00 1.60 1.10 16.85	→ ok psi (seismic)
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min	0.06 (DF No. 2) 1350 1.00 1.00 1.00 1.60 1.10 16.85 580,000	psi (seismic)
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE	0.06 (DF No. 2) 1350 1.00 1.00 1.00 1.60 1.10 16.85 580,000 1678	psi (seismic) psi psi psi
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min	0.06 (DF No. 2) 1350 1.00 1.00 1.00 1.60 1.10 16.85 580,000 1678 2376	psi (seismic) psi psi psi psi
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* C	0.06 (DF No. 2) 1350 1.00 1.00 1.00 1.60 1.10 16.85 580,000 1678 2376 0.80	psi (seismic) psi psi psi
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc*	0.06 (DF No. 2) 1350 1.00 1.00 1.00 1.60 1.10 16.85 580,000 1678 2376 0.80 0.706	psi (seismic) psi psi psi psi
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc* 1 + FcE/Fc*/2c	0.06 (DF No. 2) 1350 1.00 1.00 1.00 1.60 1.10 16.85 580,000 1678 2376 0.80 0.706 1.066	psi (seismic) psi psi psi psi
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc* 1 + FcE/Fc*/2c Cp	0.06 (DF No. 2) 1350 1.00 1.00 1.00 1.60 1.10 16.85 580,000 1678 2376 0.80 0.706 1.066 0.562	psi (seismic) psi psi psi psi sawn lumber
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc* 1 + FcE/Fc*/2c Cp Fc'	0.06 (DF No. 2) 1350 1.00 1.00 1.00 1.60 1.10 16.85 580,000 1678 2376 0.80 0.706 1.066 0.562 1335	psi (seismic) psi psi psi sawn lumber
CSI (tension) Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc* 1 + FcE/Fc*/2c Cp	0.06 (DF No. 2) 1350 1.00 1.00 1.00 1.60 1.10 16.85 580,000 1678 2376 0.80 0.706 1.066 0.562 1335 77	psi (seismic) psi psi psi psi sawn lumber

Bearing on Wall Plates

Shearwall Gravity Loads		(Point loads are ass	umed to bear directly a	above SWL chord)		J	ob#:	2015-035
(plf)	WDL	WLL	WSL/WLrL					
Wall Loads	84	0	45			Pw =	1,137	lbs
						Ps =	1,152	lbs
(lbs)	PDL	PLL	PSL/PLrL	Pw (+/-)	Ps (+/-)			
Point loads	0	0	0	0	0			
Wind ASD Load	Cases from A	SCE 7-10:			* SWL Cho	rd Tension =	1,152	lbs
5.) D + W =			ا 1,249	1,249 plf SWL Chord C		ord Comp. =	1,264	lbs
6a.) D + .75L + .	75W + 75(Lr d	or S) =	1,009 plf					
					Stu	ud Spacing =	16	in
Seismic ASD Lo	ad Cases fron	n ASCE 7-10:			C	hord Studs =	(2) 2x6	
5.) D + E =			1,264	plf (governs)	Chord	Depth (dx) =	5.5	in
6b.) D + .75L + .	75E + 75S =		1,021	plf		lb =	3.00	in

Bottom Plate (Sole Plt.) Attachment to Floor

This section is only applicable when shearwall is framed on top of a wood joist or TJI floor.

Z = 141 lbs (NDS 2012 Table 11Q for 16d nail, DF G = 0.5) CD = 1.6 (wind or seismic) Z' = 226 lbs Unit Shear = 142.2 plf Emin = 580,000 psi **19.0** in CM_e = Spacing = 1.00 Ct_e = 1.00

Slab-on-Grade Foundation, N/A

Sill Plate at Foundation

Use (1)-2x HF No. 2 pressure treated plate at foundation.

Ct_e =

1.00

^{*}Only applicable at first story shearwalls.

SHEAR WALL	CALCULATOR		SWL2	Vs =	2666 lk	os	Vw =	3745	lbs		Job#:	2015-035
				(seismic)			(wind)					
SWL Name	Shear (lbs)	Wall Length (ft)	SWL Length	Unit Shear (plf)	Wall Hgt. (ft)	Uplift (lbs)	Holdown	Anchor Bolt	Embedment	Studs	Panels	
SWL2	3,745	42.0	42.0	89.2	8.1	722	DTT2Z	THD501200H	5	(1) 2x4	1	
SEGMENT	Wind Load Govern	S								DF No. 2		
Shearwall Shea	athing Specification	<u>on:</u>		Nominal unit shea	ar capacities from S	SDPWS Table 4	.3A (Wood Frame	Shear Walls)				
$v_s =$	63	olf	<	$v_{allow} =$	240 p	If \longrightarrow	OK	(seismic)	Edge N	lail Spacing =		6 in
$v_w =$	89	olf	<	$v_{allow} =$	335 p	If \longrightarrow	OK	(wind)	Sheathing	g both sides =	NO	
									Sht. Pane	l Thickness =	7/1	in 3
Use 7/16 OSB/	PLY (APA Grade	24/16) w/ 8d na	ails @ 6" o/c ed	lges, 12" o/c field	l, blocking require	ed.			Fas	stener Type =	8	b
									Min. Pane	I Length: bs =	4:	2 ft
									Ma	ax. AR: h/bs =	0.1	ightarrow ok
Anchor Bolt Sp	<u>acing</u>							Max. Al	R Seismic Redu	ction: 2bs/h =	N//	A
Since we cannot	control species of	pressure treated	sill plate assume	weakest species fr	om NDS 2012 Tabl	e 11E for anch	or bolts (Northerr	n Species G = 0.35):				
Sill Plate:	(1)-2x			Out-of-Plane Se	<u>eismic</u>		$F_p = 0.4S_{DS}R$	k I W	Out-of-Plane W	<u>ind</u>	(MWFRS	1
AB DIA =	0.5 i	n		WDL =	12 p	sf	$p \qquad \text{or} \qquad DS'$	-a-e·· p	Ww =	0	psf	
Zpara =	530 I	bs		SDS =	0.984 g		ASCE 7-10 Sec.	12.11.2	Ltrib =	4.05	ft	

Sill Plate:	(1)-2x		Out-of-Plane Seismic		$F_p = 0.4S_{DS}k_aI_eW_p$	Out-of-Plane Wind	(MWFRS)
AB DIA =	0.5 in		WDL =	12 psf	$\mathbf{I}_{p} = 0.45_{DS} \kappa_{a} \mathbf{I}_{e} \mathbf{V}_{p}$	Ww=	0 psf
Zpara =	530 lbs		SDS =	0.984 g	ASCE 7-10 Sec. 12.11.2	Ltrib =	4.05 ft
Zperp =	290 lbs		le =	1.0		Vwperp is given as the max	a. MWFRS wind force on the bottom half
Applying adjustn	nent factors:		ka =	1.0 (concre	ete is rigid)	of an exterior wall.	
CD =	1.6 (wind or s	seismic)	Wall Hgt. =	8.1 ft		$V_{wperp} =$	0 lbs
Zpara =	848 lbs	(540 lbs)	ρ =	1.0 (out-of-	plane)		
Zperp =	464 lbs	(303 lbs)	Vsperp is given as the seism	ic force of half the de	ad weight of the wall.	Seismic Load Govern	ns:
			V _{sperp} =	562 lbs		$V_{perp} =$	562 lbs
			£.\				

AB Spacing	V (lbs)	# of Bolts	Spacing (ft)
Perp. Load	562	1.2	34.7
Para. Load	3,745	4.4	9.5

42.0 ft La = available wall length for anchor bolts

A35	Framing Angle Spacing
7100	r ranning rangic opaoing

Provide full depth blocking with A35 clips to top plt. per plan.

Lac =	42.0	ft (available co	ollector length)
Fallow =	600	lbs	(F1 direction)
Init Shear =	89.2	plf	
Spacing =	6.7	ft	

7/16" OSB sheathing on ceiling provides adequate connection, A35 angle clips not required.

Use 3/8" x 3-1/2" Powers SPIKE Anchor (Mushroom Head Carbon Steel), 1-3/4" min.
embedment @ 54" o/c spacing all of Wall 2.

Deflection	(based on strength-level seismic forces)	Pane	l #	b (ft)		Δs		
$v_u =$	88.9 plf	1		4:	2	0.03	in	
E =	1,600,000 psi	2			0		in	
A =	5.25 in ²	3			0		in	
Gt =	83,500 plf (Table C4.2.2A)	4			0		in	
da =	0.105 in (Simpson Holdown)	5		(0		in	
en =	0.0004 in (Table C4.2.2D)			Max. Defl.		0.0	3 in	
nail spacing =	6 in							
Sht. both sides =	NO		Cd =		4			

ASCE 7-10

(Table 12.12-1)

General Notes:

- 1. For unblocked shearwalls w/ studs @ 16" o/c capacity is reduced by 0.6.
- 2. All stemwall foundations walls with HDU8 or greater holdown (anchor bolt ≥ 7/8" DIA) shall be 8" min. thickness.
- 3. Uplift on holdowns calculated with dead load counter action neglected (conservative).
- 4. Where the required nominal unit shear capacity on either side of a shear wall exceeds 700 plf in SDC D framing members at adjacent panel edges shall be 3X or double 2X.
- 6. All holdowns over TJI floor, use CNW coupler nut and threaded rod for extension. Solid squash blocks beneath all shearwall chords equal to chord cross section.

1.944 in \longrightarrow **OK**

0.13 in

 $\Delta =$

∆limit =

Fc⊥	405 psi
Ct_c⊥	1.00
CM_c⊥	1.00
Cb	1.00 (1.250)
Fc⊥'	405.00 psi
Ab	5.25 in ²
Pc	722 lbs
fc⊥	138 psi
CSI (bearing)	$0.34 \rightarrow \text{OK}$
Chord in Tension	(DF No. 2)
Ft	575 psi
CM_t	1.00
Ct_t	1.00
Ci_t	1.00
CD	1.60 (wind)
CF_t	1.50
Ft'	1380 psi
An	5.25 in ²
ft	138 psi
CSI (tension)	0.10 ightarrow OK
Chord in Compression	(DF No. 2)
Chord in Compression Fc	(DF No. 2) 1350 psi
Chord in Compression Fc CM_c	(DF No. 2) 1350 psi 1.00
Chord in Compression Fc CM_c Ct_c	(DF No. 2) 1350 psi 1.00 1.00
Chord in Compression Fc CM_c Ct_c Ci_c	(DF No. 2) 1350 psi 1.00 1.00
Chord in Compression Fc CM_c Ct_c Ci_c Ci_C	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind)
Chord in Compression Fc CM_c Ct_c Ci_c Ci_C CD CF_c	(DF No. 2) 1350 psi 1.00 1.00
Chord in Compression Fc CM_c Ct_c Ci_c Ci_C	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind) 1.15 26.49
Chord in Compression Fc CM_c Ct_c Ci_c Ci_C CD CF_c (le/d)x	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind) 1.15 26.49 580,000 psi
Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind) 1.15 26.49
Chord in Compression Fc CM_c Ct_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind) 1.15 26.49 580,000 psi 680 psi
Chord in Compression Fc CM_c Ct_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc*	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind) 1.15 26.49 580,000 psi 680 psi 2484 psi
Chord in Compression Fc CM_c Ct_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* C	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind) 1.15 26.49 580,000 psi 680 psi 2484 psi 0.80 sawn lumber
Chord in Compression Fc CM_c Ct_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc*	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind) 1.15 26.49 580,000 psi 680 psi 2484 psi 0.80 sawn lumber 0.274
Chord in Compression Fc CM_c Ct_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc* 1 + FcE/Fc*/2c	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind) 1.15 26.49 580,000 psi 680 psi 2484 psi 0.80 sawn lumber 0.274 0.796
Chord in Compression Fc CM_c Ct_c Ci_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc* 1 + FcE/Fc*/2c Cp	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind) 1.15 26.49 580,000 psi 680 psi 2484 psi 0.80 sawn lumber 0.274 0.796 0.256 636 psi 138 psi
Chord in Compression Fc CM_c Ct_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* C FcE/Fc* 1 + FcE/Fc*/2c Cp Fc'	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (wind) 1.15 26.49 580,000 psi 680 psi 2484 psi 0.80 sawn lumber 0.274 0.796 0.256 636 psi

Bearing on Wall Plates

Top/Sill Plt. Species

Shearwall Grav	ity Loads	(Point loads are assu	med to bear directly	above SWL chord)		J	ob#: 2015	5-035
(plf)	Wdl	WLL	WSL/WLrL					
Wall Loads	0	0	0			Pw =	722 lbs	
						Ps =	514 lbs	
(lbs)	PDL	PLL	PSL/PLrL	Pw (+/-)	Ps (+/-)			
Point loads	0	0	0	0	0			
Wind ASD Load	d Cases from	ASCE 7-10:			* SWL Cho	ord Tension =	722 lbs	
5.) D + W =			722	plf (governs)	SWL CI	nord Comp. =	722 lbs	
6a.) D + .75L +	.75W + 75(Lr	or S) =	542	plf				
					St	ud Spacing =	16 in	
Seismic ASD L	oad Cases fro	m ASCE 7-10:			C	Chord Studs =	(1) 2x4	
5.) D + E =			514	plf	Chord	Depth (dx) =	3.5 in	
6b.) D + .75L +	.75E + 75S =		386	plf		lb =	1.50 in	

Bottom Plate (Sole Plt.) Attachment to Floor

This section is only applicable when shearwall is framed on top of a wood joist or TJI floor.

Slab-on-Grade Foundation, I	N/A

Sill Plate at Foundation

Use (1)-2x HF No. 2 pressure treated plate at foundation.

580,000 psi

1.00

1.00

1.00

Ct_e =

Ct_e =

^{*}Only applicable at first story shearwalls.

SHEAR WALL	CALCULATOR	;	SWL3	Vs =	2453 lb	s	Vw =	3745	lbs		Job#:	2015-035
				(seismic)			(wind)					
SWL Name	Shear (lbs) \	Wall Length (ft)	SWL Length	Unit Shear (plf)	Wall Hgt. (ft)	Uplift (lbs)	Holdown	Anchor Bolt	Embedment	Studs	Panels	_
SWL3	3,745	42.0	42.0	89.2	8.1	722	DTT2Z	THD501200H	5	(1) 2x4	1	
SEGMENT	Wind Load Governs	5								DF No. 2		
Shearwall Shea	thing Specificatio	<u>on:</u>		Nominal unit shea	r capacities from S	DPWS Table 4	1.3A (Wood Frame	Shear Walls)				
$v_s =$	58 p	olf	<	$v_{allow} =$	240 p	$f \longrightarrow$	OK	(seismic)	Edge N	lail Spacing =		6 in
$v_w =$	89 p	olf	<	$v_{allow} =$	335 p	$f \longrightarrow$	OK	(wind)	Sheathing	g both sides =	NO)
									Sht. Pane	l Thickness =	7/1	6 in
Use 7/16 OSB/F	PLY (APA Grade	24/16) w/ 8d na	ails @ 6" o/c ed	dges, 12" o/c field	, blocking require	d.			Fas	stener Type =	8	d
									Min. Pane	I Length: bs =	4	2 ft
									Ma	ax. AR: h/bs =	0.1	ightarrow ok
Anchor Bolt Spa	acing							Max. A	R Seismic Redu	ction: 2bs/h =	N/A	A
Since we cannot	control species of p	ressure treated s	sill plate assume	weakest species fr	om NDS 2012 Tabl	e 11E for anch	or bolts (Norther	n Species G = 0.35)	:			
Sill Plate:	(1)-2x			Out-of-Plane Se	<u>ismic</u>		$F_p = 0.4S_{DS}$	k I W	Out-of-Plane W	<u>'ind</u>	(MWFRS)
AB DIA =	0.5 ir	n		WDL =	12 p	sf	p $over DS$	$a^{2}e^{\gamma\gamma}p$	Ww =		psf	
Zpara =	530 lb	os		SDS =	0.984 g		ASCE 7-10 Sec.	12.11.2	Ltrib =	4.05	ft	
Zperp =	290 lk	os		le =	1.0				Vwperp is given as t	the max. MWFRS	wind force or	the bottom hal
Applying adjustm	ent factors:			ka =	1.0 (c	oncrete is ri	gid)		of an exterior wall.			
CD =	1.6 (wind or seismic)	Wall Hgt. =	8.1 ft				$V_{wperp} =$	0	lbs	
Zpara =	848 lk	bs ((540 lbs)	ρ =	1.0 (0	out-of-plane)						
Zperp =	464 lk	bs ((303 lbs)	Vsperp is given as th	e seismic force of half	the dead weigh	nt of the wall.		Seismic Load G	Governs:		
				$V_{\text{sperp}} =$	562 lb	s			V _{perp} =	562	lbs	

AB Spacing	V (lbs)	# of Bolts	Spacing (ft)
Perp. Load	562	1.2	34.7
Para. Load	3,745	4.4	9.5

La = 42.0 ft

La = available wall length for anchor bolts

∆limit =

A35	Framing Angle Spacing
7100	r ranning rangic opaoing

Provide full depth blocking with A35 clips to top plt. per plan.

Lac =	42.0	ft (available	collector length)
Fallow =	600	lbs	(F1 direction)
Unit Shear =	89.2	plf	
Spacing =	6.7	ft	

7/16" OSB sheathing on ceiling provides adequate connection, A35 angle clips not required.

Use 3/8" x 3-1/2" Powers SPIKE Anchor (Mushroom Head Carbon Steel), 1-3/4" min. embedment @ 54" o/c spacing all of Wall 3.

<u>Deflection</u>	(based on strength-level seismic for	orces)	Panel #	b (ft)	Δs	
$v_u =$	81.8 plf		1	42	0.03	in
E =	1,600,000 psi		2	0		in
A =	5.25 in ²		3	0		in
Gt =	83,500 plf (Table 0	24.2.2A)	4	0		in
da =	0.105 in (Simpsor	Holdown)	5	0		in
en =	0.0003 in (Table C	4.2.2D)		Max. Defl.	0.0	13 in
nail spacing =	6 in					
Sht. both sides =	NO		Cd =	4		
		ASCE 7-10	$\Delta =$	0.12 ir	า	

(Table 12.12-1)

General Notes:

- 1. For unblocked shearwalls w/ studs @ 16" o/c capacity is reduced by 0.6.
- 2. All stemwall foundations walls with HDU8 or greater holdown (anchor bolt ≥ 7/8" DIA) shall be 8" min. thickness.
- 3. Uplift on holdowns calculated with dead load counter action neglected (conservative).
- 4. Where the required nominal unit shear capacity on either side of a shear wall exceeds 700 plf in SDC D framing members at adjacent panel edges shall be 3X or double 2X.
- 6. All holdowns over TJI floor, use CNW coupler nut and threaded rod for extension. Solid squash blocks beneath all shearwall chords equal to chord cross section.

1.944 in \longrightarrow **OK**

. op/ o op oo.oo	
Fc⊥	405 psi
Ct_c⊥	1.00
CM_c⊥	1.00
Cb	1.00 (1.250)
Fc⊥'	405.00 psi
Ab	5.25 in ²
Pc	722 lbs
fc⊥	138 psi
CSI (bearing)	$_{0.34} ightarrow$ ok
Chord in Tension	(DF No. 2)
Ft	575 psi
CM_t	1.00
Ct_t	1.00
Ci_t	1.00
CD	1.60 (wind)
CF_t	1.50
Ft'	1380 psi
An	5.25 in ²
ft	138 psi
CSI (tension)	0.10 → OK
Chord in Compression	(DF No. 2)
Fc	1350 psi
CM_c	1.00
Ct_c	1.00
Ci_c	1.00
CD	1.60 (wind)
CF_c	1.15
(le/d)x	26.49
E'min	580,000 psi
FcE	680 psi
Fc*	2484 psi
С	0.80 sawn lumber
FcE/Fc*	0.274
1 + FcE/Fc*/2c	0.796
Ср	0.256
Fc'	636 psi
fc	138 psi
CSI (compression)	$_{0.22} ightarrow$ ok

Bearing on Wall Plates

Top/Sill Plt. Species

Shearwall Gravi	ty Loads	(Point loads are ass	sumed to bear directly a	above SWL chord)		J	ob#:	2015-035
(plf)	Wdl	WLL	WSL/WLrL					
Wall Loads	0	0	0			Pw =	722	lbs
						Ps =	473	lbs
(lbs)	Pdl	PLL	PsL/PLrL	Pw (+/-)	Ps (+/-)			
Point loads	0	0	0	0	0			
Wind ASD Load	I Cases from A	SCE 7-10:			* SWL Cho	ord Tension =	722	lbs
5.) D + W =			722	plf (governs)	SWL C	nord Comp. =	722	lbs
6a.) D + .75L +	6a.) D + .75L + .75W + 75(Lr or S) =		542 plf					
					St	ud Spacing =	16	in
Seismic ASD Lo	Seismic ASD Load Cases from ASCE 7-10:				C	chord Studs =	(1) 2x4	
5.) D + E =			473	plf	Chord	Depth (dx) =	3.5	in
6b.) D + .75L +	.75E + 75S =		355	plf		lb =	1.50	in

Bottom Plate (Sole Plt.) Attachment to Floor

This section is only applicable when shearwall is framed on top of a wood joist or TJI floor.

Slab-on-Grade Foundation, I	N/A

Sill Plate at Foundation

Use (1)-2x HF No. 2 pressure treated plate at foundation.

Ct_e =

Ct_e =

1.00

1.00

^{*}Only applicable at first story shearwalls.

SHEAR WALL	L CALCULATOR		SWL4	Vs =	2865 lb	S	Vw =	3745	lbs		Job#:	2015-035
				(seismic)			(wind)					
SWL Name	Shear (lbs)	Wall Length (ft)	SWL Length	Unit Shear (plf)	Wall Hgt. (ft)	Uplift (lbs)	Holdown	Anchor Bolt	Embedment	Studs	Panels	_
SWL4	3,745	42.0	42.0	89.2	8.1	722	DTT2Z	THD501200H	5	(1) 2x4	1	
SEGMENT	Wind Load Govern	าร								DF No. 2		
Shearwall She	eathing Specificati	on:		Nominal unit shea	r capacities from S	DPWS Table 4	.3A (Wood Frame	e Shear Walls)				
$V_s =$	68	plf	<	v _{allow} =	240 pl	$f \longrightarrow$	OK	(seismic)	Edge N	ail Spacing =		6 in
v _w =	89	plf	<	v _{allow} =	335 pl	$f \longrightarrow$	OK	(wind)	Sheathing	both sides =	NO	0
									Sht. Pane	Thickness =	7/1	6 in
Use 7/16 OSB	3/PLY (APA Grade	e 24/16) w/ 8d na	ails @ 6" o/c ed	dges, 12" o/c field	, blocking require	d.			Fas	stener Type =	8	d
									Min. Pane	Length: bs =	4	2 ft
									Ma	x. AR: h/bs =	0.1	$9 \rightarrow o \kappa$
Anchor Bolt Sr	pacing							Max. Al	R Seismic Redu	ction: 2bs/h =	N/A	A
•	t control species of	pressure treated	sill plate assume	weakest species fr	om NDS 2012 Table	11E for anch	or bolts (Norther	n Species G = 0.35):	:			
		.					(,				
Sill Plate:	(1)-2x			Out-of-Plane Se	ismic		E 0.40	1_ 1 117	Out-of-Plane W	ind	(MWFRS)
					-		$r = 0.45$ $r_{\rm c}$	K. I VV			,	,
AB DIA =	0.5	in		WDL =	12 ps	sf	$F_p = 0.4S_{DS}$	$a^{2}e^{r}p$	Ww =	0	psf	

Sill Plate:	(1)-2x		Out-of-Plane Seismic		$F_{p} = 0.4S_{DS}k_{a}I_{e}W_{p}$	Out-of-Plane Wind	(MWFRS)
AB DIA =	0.5 in		WDL =	12 psf	$I_p = 0.45_{DS} \kappa_a I_e v_p$	Ww =	0 psf
Zpara =	530 lbs		SDS =	0.984 g	ASCE 7-10 Sec. 12.11.2	Ltrib =	4.05 ft
Zperp =	290 lbs		le =	1.0		Vwperp is given as the max	. MWFRS wind force on the bottom half
Applying adjustm	ent factors:		ka =	1.0 (concre	te is rigid)	of an exterior wall.	
CD =	1.6 (wind	or seismic)	Wall Hgt. =	8.1 ft		$V_{wperp} =$	0 lbs
Zpara =	848 lbs	(540 lbs)	ρ =	1.0 (out-of-	plane)		
Zperp =	464 lbs	(303 lbs)	Vsperp is given as the seismi	ic force of half the dea	ad weight of the wall.	Seismic Load Govern	s:
			V _{sperp} =	562 lbs		$V_{perp} =$	562 lbs
AB Spacing	V (lbs) # of	Bolts Spacing (ft)					

AB Spacing	V (lbs)	# of Bolts	Spacing (ft)	
Perp. Load	562	1.2	34.7	
Para. Load	3,745	4.4	9.5	(6.1) @ 3/8"

42.0 ft

La = available wall length for anchor bolts

Perp. Load	562	1.2	34
Para. Load	3,745	4.4	9

Framing Angle Spacing

Use 3/8" x 3-1/2" Powers SPIKE Anchor (Mushroom Head Carbon Steel), 1-3/4" min. embedment @ 54" o/c spacing all of Wall 4.

rovide full depth blocking with A35 clips to top pit. per plan.					
Lac =	42.0	ft (available	collector length)		
Fallow =	600	lbs	(F1 direction)		
Unit Shear =	89.2	plf			
Spacing =	6.7	ft			

Fallow =	600 lbs	(F1 direction)
Shear =	89.2 plf	
pacing =	6.7 ft	

7/16" OSB sheathing on ceiling provides adequate)
connection, A35 angle clips not required.	

<u>Deflection</u>	(based on strength-level seismic forces)	Panel #	b (ft)	Δs	
$v_u =$	95.5 plf	1	42	0.03	in
E =	1,600,000 psi	2	0		in
A =	5.25 in ²	3	0		in
Gt =	83,500 plf (Table C4.2.2A)	4	0		in
da =	0.105 in (Simpson Holdown)	5	0		in
en =	0.0005 in (Table C4.2.2D)		Max. Defl.	0.0	3 in
nail spacing =	6 in				
Sht. both sides =	NO	Cd =	4		

ASCE 7-10

(Table 12.12-1)

General Notes:

- 1. For unblocked shearwalls w/ studs @ 16" o/c capacity is reduced by 0.6.
- 2. All stemwall foundations walls with HDU8 or greater holdown (anchor bolt ≥ 7/8" DIA) shall be 8" min. thickness.
- 3. Uplift on holdowns calculated with dead load counter action neglected (conservative).
- 4. Where the required nominal unit shear capacity on either side of a shear wall exceeds 700 plf in SDC D framing members at adjacent panel edges shall be 3X or double 2X.
- 6. All holdowns over TJI floor, use CNW coupler nut and threaded rod for extension. Solid squash blocks beneath all shearwall chords equal to chord cross section.

1.944 in \longrightarrow **OK**

0.14 in

 $\Delta =$

∆limit =

Bearing on wall Plates		<u>Snearwaii (</u>	<u> Fravity Loads</u> (F
Top/Sill Plt. Species	HF	(plf)	WdL
Fc⊥	405 psi	Wall Loa	ds 0
Ct_c⊥	1.00		
CM_c⊥	1.00	(lbs)	PDL
Cb	1.00 (1.25	0) Point loa	ds 0
Fc⊥'	405.00 psi		
Ab	5.25 in ²	Wind ASD	Load Cases from ASO
Pc	722 lbs	5.) D + W =	:
fc⊥	138 psi	6a.) D + .75	5L + .75W + 75(Lr or \$
CSI (bearing)	0.34 ->	ок	
		Seismic AS	D Load Cases from A
Chord in Tension	(DF No. 2)	5.) D + E =	
Ft	575 psi	6b.) D + .75	5L + .75E + 75S =
CM_t	1.00		
Ct_t	1.00		
Ci_t	1.00		Bottom Plate (Sc
CD	1.60 (wind	1)	This section is or
CF_t	1.50		Z =
Ft'	1380 psi		CD =
An	5.25 in ²		Z' =
ft	138 psi		Unit Shear =
CSI (tension)	0.10	ок	Spacing =
Chord in Compression	(DF No. 2)		Slab-on-Grade F
Fc	1350 psi		
CM_c	1.00		
Ct_c	1.00		Sill Plate at Foun
Ci_c	1.00		
CD	1.60 (wind	1)	Use (1)-2x HF No
CF_c	1.15		
(le/d)x	26.49		*Only applicable at
E'min	580,000 psi		
FcE	680 psi		
Fc*	2484 psi		
С	0.80 sawn	lumber	
FcE/Fc*	0.274		
FcE/Fc* 1 + FcE/Fc*/2c	0.274 0.796		
1 + FcE/Fc*/2c	0.796		
1 + FcE/Fc*/2c Cp	0.796 0.256		

Bearing on Wall Plates

Shearwall Gravit	<u>y Loads</u>	(Point loads are ass	umed to bear directly a	bove SWL chord)		Jo	ob#:	2015-035
(plf)	Wdl	WLL	WSL/WLrL					
Wall Loads	0	0	0			Pw =	722	lbs
						Ps =	553	lbs
(lbs)	PdL	PLL	PSL/PLrL	Pw (+/-)	Ps (+/-)			
Point loads	0	0	0	0	0			
Wind ASD Load	Cases from A	SCE 7-10:			* SWL Cho	ord Tension =	722	lbs
5.) D + W =			722 plf (governs)		SWL Ch	nord Comp. =	722	lbs
6a.) D + .75L + .	75W + 75(Lr o	r S) =	542 plf					
					St	ud Spacing =	16	in
Seismic ASD Lo	ad Cases from	ASCE 7-10:			С	hord Studs =	(1) 2x4	
5.) D + E =			553	olf	Chord	Depth $(dx) =$	3.5	in
6b.) D + .75L + .	75E + 75S =		414	olf		lb =	1.50	in

n Plate (Sole Plt.) Attachment to Floor

ection is only applicable when shearwall is framed on top of a wood joist or TJI floor.

Z = 141 lbs (NDS 2012 Table 11Q for 16d nail, DF G = 0.5) CD = 1.6 (wind or seismic) Z' = 226 lbs Shear = 89.2 plf Emin =

Ct_e = 1.00 n-Grade Foundation, N/A Ct_e = 1.00

ate at Foundation

)-2x HF No. 2 pressure treated plate at foundation.

30.4 in

580,000 psi

1.00

CM_e =

pplicable at first story shearwalls.

SHEAR WALL	CALCULATOR		SWL5	Vs =	2248 I	bs	Vw =	2226	lbs		Job#:	2015-035
				(seismic)			(wind)					
SWL Name	Shear (lbs)	Wall Length (ft)	SWL Length	Unit Shear (plf)	Wall Hgt. (ft)	Uplift (lbs)	Holdown	Anchor Bolt	Embedment	Studs	Panels	_
SWL5	2,248	42.9	42.9	156.8	8.1	1,270	DTT2Z	THD501200H	5	(2) 2x6	1	_
PERF	Seismic Load Go	verns	Co =	0.61	ΣLi (ft) =	23.50	bs =	11.75	ft	DF No. 2		
Shearwall Shear	athing Specificat	tion:		Nominal unit she	ar capacities from	SDPWS Table 4.	.3A (Wood Frame	Shear Walls)				
$v_s =$	157	plf	<	$v_{allow} =$	240 բ	olf \longrightarrow	OK	(seismic)	Edge N	Nail Spacing =	: 6	in in
$v_w =$	155	plf	<	$v_{allow} =$	335 p	olf \longrightarrow	OK	(wind)	Sheathing	g both sides =	: NC)
									Sht. Pane	el Thickness =	7/16	in in
Use 7/16 OSB/	PLY (APA Grad	le 24/16) w/ 8d na	ails @ 6" o/c ed	lges, 12" o/c field	d, blocking requir	ed.			Fa	stener Type =	· 8c	l
Min. Panel Length: bs = 1									11.75	i ft		
Max. AR: $h/bs = 0$.									0.69	\rightarrow ok		
Anchor Bolt Sp	pacing							Max. A	R Seismic Redu	uction: 2bs/h =	· N/A	1

Anchor Bolt Spacing

Since we cannot control species of pressure treated sill plate assume weakest species from NDS 2012 Table 11E for anchor bolts (Northern Species G = 0.35):

Sill Plate:	(1)-2x	Out-of-Plane Seismic		$F_p = 0.4 S_{DS} k_a I_e W_p$	Out-of-Plane Wind	(MWFRS)
AB DIA =	0.5 in	WDL =	12 psf	$\mathbf{r}_p = 0.15_{DS} \mathbf{\kappa}_a \mathbf{r}_e \mathbf{r}_p$	Ww=	28.95 psf
Zpara =	530 lbs	SDS =	0.984 g	ASCE 7-10 Sec. 12.11.2	Ltrib =	4.05 ft
Zperp =	290 lbs	le =	1.0		Vwperp is given as the max	c. MWFRS wind force on the bottom half
Applying adjustn	nent factors:	ka =	1.0 (concrete	e is rigid)	of an exterior wall.	
CD =	1.6 (wind or seismic)	Wall Hgt. =	8.1 ft		$V_{wperp} =$	3,016 lbs
Zpara =	848 lbs	ρ =	1.0 (out-of-pl	ane)		
Zperp =	464 lbs	Vsperp is given as the seism	ic force of half the dead	weight of the wall.	Wind Load Governs:	
		V _{sperp} =	574 lbs		$V_{perp} =$	3,016 lbs

La =

26.9 ft

AB Spacing	V (lbs)	# of Bolts	Spacing (ft)
Perp. Load	3,016	6.5	4.1
Para. Load	2,248	2.7	10.1

Use 1/2" DIA anchor bolts, 7" min.	embedment /w 3"x3"x1/4" washers @ 48" o/c spacing all
of Wall 1.	

A35 Framing Angle Spacing

Provide full depth blocking with A35 clips to top plt. per plan.

Lac =	42.9	ft (available	collector length)
Fallow =	600	lbs	(F1 direction)
Unit Shear =	52.4	plf	
Spacing =	11.4	ft	

7/16" OSB sheathing on ceiling provides adequate connection, A35 angle clips not required.

<u>Deflection</u>	(based on strength-level seismic forces)	Panel #	b (ft)	Δs	
$v_u =$	219.5 plf	1	42.875	0.11	in
E =	1,600,000 psi	2	0		in
A =	16.5 in ²	3	0		in
Gt =	83,500 plf (Table C4.2.2A)	4	0		in
da =	0.128 in (Simpson Holdown)	5	0		in
en =	0.0066 in (Table C4.2.2D)		Max. Defl.		1 in
nail spacing =	6 in				
Sht hoth sides -	- NO	Cd -	4		

ASCE 7-10

(Table 12.12-1)

La = available wall length for anchor bolts

General Notes:

- 1. For unblocked shearwalls w/ studs @ 16" o/c capacity is reduced by 0.6.
- 2. All stemwall foundations walls with HDU8 or greater holdown (anchor bolt ≥ 7/8" DIA) shall be 8" min. thickness.
- 3. Uplift on holdowns calculated with dead load counter action neglected (conservative).
- 4. Where the required nominal unit shear capacity on either side of a shear wall exceeds 700 plf in SDC D framing members at adjacent panel edges shall be 3X or double 2X.
- 6. All holdowns over TJI floor, use CNW coupler nut and threaded rod for extension. Solid squash blocks beneath all shearwall chords equal to chord cross section.

1.944 in \longrightarrow **OK**

0.42 in

 $\Delta =$

∆limit =

Top/Sill Fit. Species	ПГ
Fc⊥	405 psi V
Ct_c⊥	1.00
CM_c⊥	1.00
Cb	1.00 (1.125) F
Fc⊥'	405.00 psi
Ab	16.50 in ² Wi
Pc	1382 lbs 5.)
fc⊥	84 psi 6a.
CSI (bearing)	$_{0.21} \rightarrow $ ok
	Se
Chord in Tension	(DF No. 2) 5.)
Ft	575 psi 6b.
CM_t	1.00
Ct_t	1.00
Ci_t	1.00
CD	1.60 (seismic)
CF_t	1.30
Ft'	1196 psi
An	16.50 in ²
ft	77 psi
CSI (tension)	$0.06 ightarrow { m oK}$
Chord in Compression	(DF No. 2)
Fc	1350 psi
CM_c	1.00
Ct_c	1.00
Ci_c	1.00
CD	1.60 (seismic)
CF_c	1.10
(le/d)x	16.85
E'min	580,000 psi
FcE	1678 psi
Fc*	2376 psi
С	0.80 sawn lumber
FcE/Fc*	0.706
1 + FcE/Fc*/2c	1.066
Ср	0.562
Fc'	1335 psi
fc	84 psi
CSI (compression)	$_{0.06} ightarrow$ ok

Bearing on Wall Plates

Top/Sill Plt. Species

Shearwall Gravi	ty Loads	(Point loads are ass	umed to bear directly a	bove SWL chord)		J	ob#:	2015-035
(plf)	WdL	WLL	WSL/WLrL					
Wall Loads	84	0	45			Pw =	1,258	lbs
						Ps =	1,270	lbs
(lbs)	PDL	PLL	PSL/PLrL	Pw (+/-)	Ps (+/-)			
Point loads	0	0	0	0	0			
Wind ASD Load	Cases from A	SCE 7-10:			* SWL Cho	rd Tension =	1,270	lbs
5.) D + W =			1,370 plf		SWL Ch	ord Comp. =	1,382	lbs
6a.) D + .75L + .	.75W + 75(Lr o	or S) =	1,100 plf					
					Stu	ıd Spacing =	16	in
Seismic ASD Lo	oad Cases from	n ASCE 7-10:			CI	nord Studs =	(2) 2x6	
5.) D + E =			1,382 բ	olf (governs)	Chord	Depth (dx) =	5.5	in
6b.) D + .75L + .	.75E + 75S =		1,110 դ	olf		lb =	3.00	in

Bottom Plate (Sole Plt.) Attachment to Floor

This section is only applicable when shearwall is framed on top of a wood joist or TJI floor.

 $Z = 141 \text{ lbs} \qquad \text{(NDS 2012 Table 11Q for 16d nail, DF G} = 0.5)$ CD = 1.6 (wind or seismic) Z' = 226 lbs $Unit \text{ Shear} = 156.8 \text{ plf} \qquad \text{Emin} = 5 \text{ Spacing} = 17.3 \text{ in} \qquad \text{CM_e} = 10.5 \text{ cm}$

Slab-on-Grade Foundation, N/A	
olab off Grade Foundation, 14/A	

Sill Plate at Foundation

Use (1)-2x HF No. 2 pressure treated plate at foundation.

580,000 psi

1.00

1.00

1.00

Ct_e =

Ct_e =

^{*}Only applicable at first story shearwalls.

SHEAR WALL	. CALCULATOR		SWLB	Vs =	10981 1	os	Vw =	6210	lbs		Job#:	2015-035
				(seismic)			(wind)					
SWL Name	Shear (lbs)	Wall Length (ft)	SWL Length	Unit Shear (plf)	Wall Hgt. (ft)	Uplift (lbs)	Holdown	Anchor Bolt	Embedment	Studs	Panels	_
SWLB	10,981	82.8	82.8	132.7	8.1	1,075	DTT2Z	THD501200H	5	(2) 2x4	1	-
SEGMENT	Seismic Load Gov	verns								DF No. 2		
Shearwall Shear	athing Specificat	tion:		Nominal unit she	ar capacities from S	SDPWS Table 4	.3A (Wood Fram	e Shear Walls)				
$v_s =$	133	plf	<	$v_{allow} =$	240 p	olf \longrightarrow	ОК	(seismic)	Edge N	lail Spacing =	: 6	in in
$v_w =$	75	plf	<	$v_{allow} =$	335 p	of \longrightarrow	OK	(wind)	Sheathing	g both sides =	: NC)
									Sht. Pane	el Thickness =	7/16	in in
Use 7/16 OSB/	/PLY (APA Grad	e 24/16) w/ 8d na	ails @ 6" o/c ed	ges, 12" o/c field	d, blocking require	ed.			Fas	stener Type =	· 8c	l
									Min. Pane	I Length: bs =	82.75	i ft
									Ma	ax. AR: h/bs =	0.10	\rightarrow ok
Anchor Bolt Sp	pacing							Max. Al	R Seismic Redu	ction: 2bs/h =	· N/A	1

Anchor Bolt Spacing

Since we cannot control species of pressure treated sill plate assume weakest species from NDS 2012 Table 11E for anchor bolts (Northern Species G = 0.35):

Sill Plate:	(1)-2x	Out-of-Plane Seismic		$F_p = 0.4S_{DS}k_aI_eW_p$	Out-of-Plane Wind	(MWFRS)
AB DIA =	0.5 in	WDL =	12 psf	$I_p = 0.45_{DS} \kappa_a I_e V_p$	Ww=	0 psf
Zpara =	530 lbs	SDS =	0.984 g	ASCE 7-10 Sec. 12.11.2	Ltrib =	4.05 ft
Zperp =	290 lbs	le =	1.0		Vwperp is given as the max	c. MWFRS wind force on the bottom half
Applying adjustn	nent factors:	ka =	1.0 (concret	e is rigid)	of an exterior wall.	
CD =	1.6 (wind or seismic)	Wall Hgt. =	8.1 ft		$V_{wperp} =$	0 lbs
Zpara =	848 lbs	ρ =	1.0 (out-of-p	lane)		
Zperp =	464 lbs	Vsperp is given as the seism	ic force of half the dea	d weight of the wall.	Seismic Load Govern	ns:
		V _{sperp} =	1,108 lbs		$V_{perp} =$	1,108 lbs

82.8 ft

La =

AB Spacing	V (lbs)	# of Bolts	Spacing (ft)
Perp. Load	1,108	2.4	34.7
Para. Load	10,981	12.9	6.4

Use 1/2" DIA anchor bolts, 7" min. embedment /w 3"x3"x1/4" washers @ 60" o/c spacing all
of Wall B.

A35 Framing Angle Spacing Provide full depth blocking with A35 clips to top plt. per plan.

Lac =	82.8	it (available	collector length)
Fallow =	600	lbs	(F1 direction)
Unit Shear =	132.7	plf	
Spacing =	4.5	ft	

7/16" OSB sheathing on ceiling provides adequate connection, A35 angle clips not required.

Deflection	(based on strength-level seismic forces)	Panel #	b (ft)	Δs		
$v_u =$	185.8 plf	1	82.75	0.06	in	
E =	1,600,000 psi	2	0		in	
A =	10.5 in ²	3	0		in	
Gt =	83,500 plf (Table C4.2.2A)	4	0		in	
da =	0.128 in (Simpson Holdown)	5	0		in	
en =	0.0040 in (Table C4.2.2D)		Max. Defl.	0.0	6 in	
nail spacing =	6 in					
Sht. both sides =	: NO	Cd =	4			

ASCE 7-10

(Table 12.12-1)

La = available wall length for anchor bolts

 $\Delta =$

∆limit =

General Notes:

- 1. For unblocked shearwalls w/ studs @ 16" o/c capacity is reduced by 0.6.
- 2. All stemwall foundations walls with HDU8 or greater holdown (anchor bolt ≥ 7/8" DIA) shall be 8" min. thickness.
- 3. Uplift on holdowns calculated with dead load counter action neglected (conservative).
- 4. Where the required nominal unit shear capacity on either side of a shear wall exceeds 700 plf in SDC D framing members at adjacent panel edges shall be 3X or double 2X.
- 6. All holdowns over TJI floor, use CNW coupler nut and threaded rod for extension. Solid squash blocks beneath all shearwall chords equal to chord cross section.

1.944 in \longrightarrow **OK**

0.22 in

Fc⊥		
. •=	405 psi	
Ct_c⊥	1.00	
CM_c⊥	1.00	
Cb	1.00 (1.125)	
Fc⊥'	405.00 psi	
Ab	10.50 in ²	
Pc	1753 lbs	
fc⊥	167 psi	
CSI (bearing)	$_{0.41} ightarrow$ ok	
Chord in Tension	(DF No. 2)	
Ft	575 psi	
CM_t	1.00	
Ct_t	1.00	
Ci_t	1.00	
CD	1.60 (seismic)	
CF_t	1.50	
Ft'	1380 psi	
An	10.50 in ²	
ft	102 psi	
CSI (tension)	0.07 ightarrow OK	
COI (tollololl)	0.07 × 0.10	
Chord in Compression	(DF No. 2)	
Chord in Compression Fc	(DF No. 2) 1350 psi	
Chord in Compression Fc CM_c	(DF No. 2) 1350 psi 1.00	
Chord in Compression Fc CM_c Ct_c	(DF No. 2) 1350 psi 1.00 1.00	
Chord in Compression Fc CM_c	(DF No. 2) 1350 psi 1.00 1.00 1.00	
Chord in Compression Fc CM_c Ct_c Ci_c Ci_C	(DF No. 2) 1350 psi 1.00 1.00	
Chord in Compression Fc CM_c Ct_c Ci_c	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic)	
Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic) 1.15	
Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic) 1.15 26.49	
Chord in Compression Fc CM_c Ct_c Ci_c CD CF_c (le/d)x E'min	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic) 1.15 26.49 580,000 psi 680 psi	
Chord in Compression Fc CM_c Ct_c Ci_c Ci_c CD CF_c (le/d)x E'min FcE	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic) 1.15 26.49 580,000 psi	
Chord in Compression Fc CM_c Ct_c Ci_c Ci_c CD CF_c (le/d)x E'min FcE Fc*	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic) 1.15 26.49 580,000 psi 680 psi 2484 psi	
Chord in Compression Fc CM_c Ct_c Ci_c Ci_c CD CF_c (le/d)x E'min FcE Fc* C	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic) 1.15 26.49 580,000 psi 680 psi 2484 psi 0.80 sawn lumber	
Chord in Compression Fc CM_c Ct_c Ci_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc*	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic) 1.15 26.49 580,000 psi 680 psi 2484 psi 0.80 sawn lumber 0.274	
Chord in Compression Fc CM_c Ct_c Ci_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc* 1 + FcE/Fc*/2c	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic) 1.15 26.49 580,000 psi 680 psi 2484 psi 0.80 sawn lumber 0.274 0.796	
Chord in Compression Fc CM_c Ct_c Ci_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc* 1 + FcE/Fc*/2c Cp	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic) 1.15 26.49 580,000 psi 680 psi 2484 psi 0.80 sawn lumber 0.274 0.796 0.256	
Chord in Compression Fc CM_c Ct_c Ct_c Ci_c CD CF_c (le/d)x E'min FcE Fc* c FcE/Fc* 1 + FcE/Fc*/2c Cp Fc'	(DF No. 2) 1350 psi 1.00 1.00 1.00 1.60 (seismic) 1.15 26.49 580,000 psi 680 psi 2484 psi 0.80 0.274 0.796 0.256 636 psi	

Bearing on Wall Plates

Top/Sill Plt. Species

Shearwall Gravit	y Loads	(Point loads are as:	sumed to bear directly a	bove SWL chord)		J	ob#:	2015-035
(plf)	Wdl	WLL	WSL/WLrL					
Wall Loads	382	0	438			Pw =	608	lbs
						Ps =	1,075	lbs
(lbs)	PdL	PLL	PSL/PLrL	Pw (+/-)	Ps (+/-)			
Point loads	0	0	0	0	0			
Wind ASD Load	Cases from A	SCE 7-10:			* SWL Chore	d Tension =	1,075	lbs
5.) D + W =			1,117 բ	olf	SWL Cho	rd Comp. =	1,753	lbs
6a.) D + .75L + .	75W + 75(Lr o	r S) =	1,403 բ	olf				
					Stud	d Spacing =	16	in
Seismic ASD Lo	ad Cases from	ASCE 7-10:			Ch	ord Studs =	(2) 2x4	
5.) D + E =			1,584 բ	olf	Chord E	Depth (dx) =	3.5	in
6b.) D + .75L + .	75E + 75S =		1,753 բ	olf (governs)		lb =	3.00	in

Bottom Plate (Sole Plt.) Attachment to Floor

This section is only applicable when shearwall is framed on top of a wood joist or TJI floor.

Z = 141 lbs (NDS 2012 Table 11Q for 16d nail, DF G = 0.5) CD = 1.6 (wind or seismic) Z' = 226 lbs

Unit Shear = 132.7 plf

20.4 in Spacing =

Emin = 580,000 psi CM_e = 1.00 Ct_e = 1.00

1.00

Ct_e =

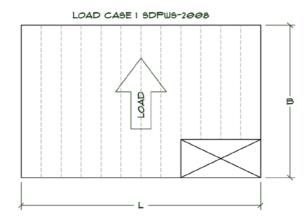
Slab-on-Grade Foundation, N/A

Sill Plate at Foundation

Use (1)-2x HF No. 2 pressure treated plate at foundation.

^{*}Only applicable at first story shearwalls.

Roof Diaphragm and Sheathing Calculations


By inspection the highest stressed diaphragm is the main roof diaphragm. The transverse and longitudinal loads are obtained from the woodworks shearwall software. We consider both cases and conservatively design for the worst load case.

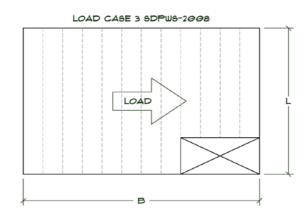
1.) Transverse Load Case:

WD =	178 plf
Mmax =	9,812 ft-lbs
T=C=M/b=	228 lbs

$$V = 1869 \text{ lbs}$$

 $V = V/b = 43 \text{ plf}$

Load Case 1	
SDPWS-2008	



L/B Ratio = $0.49 \rightarrow \text{OK}$ *Max. AR for WSP, unblocked = 3:1

2.) Longitudinal Load Case:

Mmax =	12,307 ft-lbs
T=C=M/b=	148 lbs

$$V = 2290 \text{ lbs}$$

 $V = V/b = 28 \text{ plf}$

L/B Ratio = 0.26 \rightarrow **OK** *Max. AR for WSP, unblocked = 3:1

Job#: 2015-035

Roof Sheathing Specifications

(Initially assume APA rated sheathing with nails @ 6" o/c edges, 12" o/c field.)

Sheathing Thickness: 7/16 in. APA Rating: Grade 24/16

Nails: 8d Sheathing Type: OSB Rafter/Truss Spacing: 24 in. o/c Roof Framing Species: SPF (Unblocked Diaphragm) SGAF: 0.92

Load Case 1: (transverse)

V = 43 plf < $VW = 297 \text{ plf} \longrightarrow OK$

Load Case 3: (longitudinal)

 $V = 28 \text{ plf} < Vw = 219 \text{ plf} \longrightarrow OK$

Note: Nominal unit shear capacities for unblocked diaphragms from Table 4.2C,

SDPWS-2008.

Sheath roof with 7/16 APA rated OSB (Grade 24/16) w/ 8d nails @ 6" o/c edges, 12" o/c field. Blocking not required at panel edges.

Chord Splices

From previous, transverse load case governs with largest chord force:

T = C = 228 lbs

Assume a min. 48" chord splice at top plate connected with two or three rows of 16d nails (.162" x 3.5").

From NDS 2012 Table 11N: CD = 1.6 (wind/seismic)

Z = 141 lbs

Z' = Z(CD) = 225.6 lbs

N = T/Z' = 1.0 nails

This number is too low, revert to prescriptive method: [Table 3.21 WFCM 2012]

Use (10) - 16d nails on each side of splice joint in wall top chords. Position splice joint over studs.

Where top chord is discontinous, apply an MSTC40 strap to complete the tensile load path. (ie. Where a beam ties into a top plate)

Job#: 2015-035

Roof Panel Sheathing Loads

Highest loading on roof sheathing panels is at roof overhangs in Zone 3 (C&C Wind Loads) with negative pressure/uplift.

Terrain Exp. Category

С

P30H =

110.21 psf (unfactored)

Basic Wind Speed (ultimate)

135.00 MPH

Convert to ASD value by multiplying by 0.6:

Roof Sheathing Nailing

P3OH ASD: 66.126 psf

_	Edges (in.)	Field (in.)
Interior (Zone 1)	6	12
Perimeter (Zone 2)	6	6
Gable Endwall & Overhangs	4	4

Also consider highest gravity loads:

*Based on WFCM 2012 Table 3.10, Rafter/Truss spacing @ 24" o/c.

D + S(ice dam at overhangs)

Ps = 7.4 psf +

38.5 psf =

45.9 psf

Wind Load Governs: CD = 1.6

From SDPWS-2008 Table 3.2.2 (Load Capacities for Roof Sheathing Resisting Out-of-Plane Loads):

Pmax =66.1 psf Pallow =

84.4 psf \longrightarrow **OK**

Also from APA publication Q225G Table 2a (OSB Sheathing):

Sheathing Perpendicular to Rafters/Trusses

L/240 51 psf 46.3 psf ² OK L/180 46.3 psf² OK 68 psf Bending 128 psf 66.1 psf OK Shear 213 psf 66.1 psf OK

*Note: L/240 is (live load) deflection, L/180 is (total load) deflection.

Install "h" clips at panel edges @ 24" o/c for all roof sheathing.

Nail all sheathing at gable and eave roof overhangs w/ 8d nails @ 4" o/c edges, 4" o/c field. Nail all sheathing at perimeter and peak of roof w/ 8d nails @ 6" o/c edges, 6" o/c field.

General Notes:

^{1.)} For roof sheathing within 4 feet of the perimeter edge of the roof, including 4 feet on each side of the roof peak, the 4 foot perimeter edge zone attachment requirements shall be used.

^{2.)} The wind loading is permitted to be taken as 0.42 times the C&C loads for the purpose of determining deflection limits per footnote f. of Table 1604.3 IBC 2015.

Job#: 2015-035

Wall Sheathing Specifications

(Initially assume APA rated sheathing with nails @ 6" o/c edges, 12" o/c field.)

Sheathing Thickness: 7/16 in. APA Rating: Grade 24/16

Nails: 8d Sheathing Type: OSB

Stud Spacing: 16 in. o/c

Terrain Exp. Category C

Basic Wind Speed (ultimate) 135.00 MPH

Wall Panel Sheathing Loads

Highest loading of wall sheathing panels is at building corners in Zone 5 (C&C Wind Loads) with negative pressure/suction.

Wall Sheathing Nailing

P5 = 47.18 psf (unfactored) Edges (in.) Field (in.)

Convert to ASD value by multiplying by 0.6: Interior (Zone 4) 6 12

Edge (Zone 5) 6 12

*Based on WFCM 2012 Table 3.11, Stud spacing @ 16" o/c.

P5_ASD = 28.308 psf

From SDPWS-2008 Table 3.2.1 (Load Capacities for Wall Sheathing Resisting Out-of-Plane Loads):

Sheathing Parallel to Studs

P5_ASD = 28.3 psf < Pallow = $37.5 \text{ psf} \longrightarrow \text{OK}$

Sheathing Perpendicular to Studs

 $P5_ASD = 28.3 \text{ psf}$ < $Pallow = 190.6 \text{ psf} \longrightarrow OK$

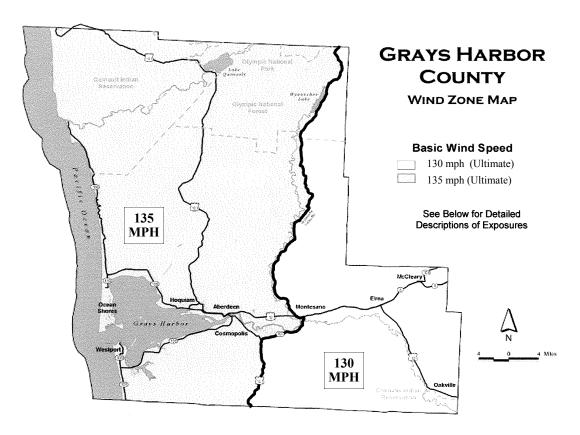
Also from APA publication Q225G Table 2a (OSB Sheathing):

Sheathing Parallel to Studs

L/360	\longrightarrow	26 psf	>	19.8 psf^{-2}	\longrightarrow	OK
Bending	\longrightarrow	86 psf	>	28.3 psf	\longrightarrow	OK
Shear	\longrightarrow	331 psf	>	28.3 psf	\longrightarrow	OK
Sheathing	Perpendicula	ar to Studs				
L/360	\longrightarrow	128 psf	>	19.8 psf ²	\longrightarrow	OK
Bending	\longrightarrow	288 psf	>	28.3 psf	\longrightarrow	OK
Shear	\longrightarrow	331 psf	>	28.3 psf	\longrightarrow	OK

Sheath walls with 7/16 APA rated OSB (Grade 24/16) w/ 8d nails @ 6" o/c edges, 12" o/c field.

Nail all sheathing within 4 feet of wall corners w/ 8d nails @ 6" o/c edges, 12" o/c field.


General Notes:

^{1.)} For wall sheathing within 4 feet of the corners, the 4 foot edge zone attachment requirements shall be used.

^{2.)} The wind loading is permitted to be taken as 0.42 times the C&C loads for the purpose of determining deflection limits per footnote f. of Table 1604.3 IBC 2015.

WIND ZONE MAP

BASIC WIND SPEED. Three-second gust speed at 33 feet (10,058 mm) above the ground in Exposure C.

1609.4 Exposure Category.

For each wind direction considered, an exposure category that adequately reflects the characteristics of ground surface irregularities shall be determined for the site at which the building or structure is to be constructed. Account shall be taken of variations in ground surface roughness that arise from natural topography and vegetation as well as from constructed features.

1609.4.1 Wind directions and sectors. For each selected wind direction at which the wind loads are to be evaluated, the exposure of the building or structure shall be determined for the two upwind sectors extending 45 degrees (0.79 rad) either side of the selected wind direction. The exposures in these two sectors shall be determined in accordance with Sections 1609.4.2 and 1609.4.3 and the exposure resulting in the highest wind loads shall be used to represent winds from that direction.

1609.4.2 Surface roughness categories. A ground surface roughness within each 45-degree (0.79 rad) sector shall be determined for a distance upwind of the site as defined in Section 1609.4.3 from the categories defined below, for the purpose of assigning an exposure category as defined in Section 1609.4.3.

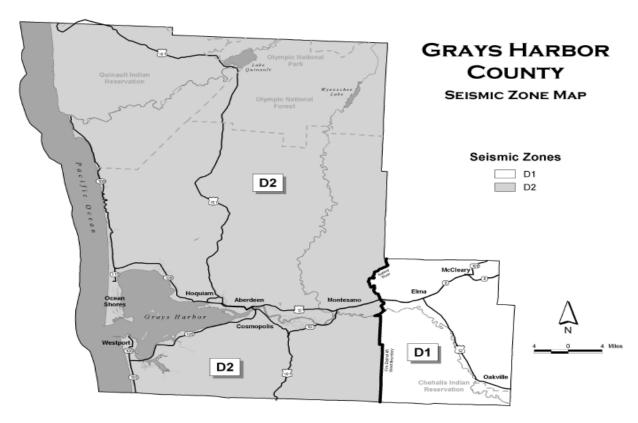
Surface Roughness B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger.

Surface Roughness C. Open terrain with scattered obstructions having

heights generally less than 30 feet (9144 mm). This category includes flat open country, grasslands and all water surfaces in hurricane-prone regions.

Surface Roughness D. Flat, unobstructed areas and water surfaces outside hurricane-prone regions. This category includes smooth mud flats, salt flats and unbroken ice.

1609.4.3 Exposure categories. An exposure category shall be determined in accordance with the following:


Exposure B. Exposure B shall apply where the ground surface roughness condition, as defined by Surface Roughness B, prevails in the upwind direction for a distance of at least 2,600 feet (792 m) or+ 20 times the height of the building, whichever is greater.

Exception: For buildings whose mean roof height is less than or equal to 30 feet (9144 mm), the upwind distance is permitted to be reduced to 1,500 feet (457 m).

Exposure C. Exposure C shall apply for all cases where Exposures B or D do not apply.

Exposure D. Exposure D shall apply where the ground surface roughness, as defined by Surface Roughness D, prevails in the upwind direction for a distance of at least 5,000 feet (1524 m) or 20 times the height of the building, whichever is greater. Exposure D shall extend

SEISMIC ZONE MAP

TABLE R301.2(1) CLIMATIC AND GEOGRAPHIC DESIGN CRITERIA

	ULT.		SUBJECT TO DAMAGE FROM							
GROUND SNOW LOAD	SPEED ^d	SEISMIC DESIGN CATEGORY ^f	Weathering ^a	Frost line depth ^b		WINTER DESIGN TEMP ^e		$HAZARDS^g$	AIR FREEZING INDEX ⁱ	MEAN ANNUAL TEMP ^j
25 psf	130/135	D1/D2	Moderate	12"	Slight/Moderate	24°	NO	8/17/81 9/29/86	250	50°

For SI: 1 pound per square foot = 0.0479 kPa, 1 mile per hour = 0.447 m/s.

- Weathering may require a higher strength concrete or grade of masonry than necessary to satisfy the structural requirements of this code. The weathering column shall be filled in with the weathering index (i.e. "negligible", "moderate" or "severe") for concrete as determined from the Weathering Probability Map [Figure R301.2 (3)]. The grade of masonry units shall be determined from ASTM C 34, C 55, C 62, C 73, C 90, C 129, C 145, C 216 or C 652.
- The frost line depth may require deeper footings than indicated in Figure R403.1 (1). The jurisdiction shall fill in the frost line depth column with the minimum depth of
- The jurisdiction shall fill in this part of the table to indicate the need for protection depending on whether there has been a history of local subterranean termite damage.
- The jurisdiction shall fill in this part of the table with the wind speed from the basic wind speed map [Figure R301.2 (4)]. Wind exposure category shall be determined on a site-specific basis in accordance with Section R301.2.1.4.
- The outdoor design dry-bulb temperature shall be selected from the columns of 97½-percent values for winter from Appendix D of the *International Plumbing Code*. Deviations from the Appendix D temperatures shall be permitted to reflect local climates or local weather experience as determined by the building official.
- The jurisdiction shall fill in this part of the table with the seismic design category determined from Section R301.2.2.1. f.
- The jurisdiction shall fill in this part of the table with; (a) the date of the jurisdiction'
- s entry into the National Flood Insurance Program (date of adoption of the first code or ordinance for management of flood hazard areas). (b) the date(s) of the currently
- effective FIRM and FBFM, or other flood hazard map adopted by the community, as may be amended.

 In accordance with Sections R905.2.7.1, R905.4.3.1, R905.5.3.1, R905.6.3.1, R905.7.3.1 and R905.8.3.1, where there has been a history of local damage from the effects of ice damming, the jurisdiction shall fill in this part of the table with "YES". Otherwise, the jurisdiction shall fill in this part of the table with "NO".
- The jurisdiction shall fill in this part of the table with the 100-year return period air freezing index (BF-days) from Figure R403.3 (2) or from the 100-year (99%) value on the National Climatic Data Center data table "Air Freezing Index - USA Method (Base 32° Fahrenheit)" at www.ncdc.noaa.gov/fpsf.html.
- The jurisdiction shall fill in this part of the table with the mean annual temperature from the National Climatic Data Center data table "Air Freezing Index-USA Method (Base 32°Fahrenheit)" at www.ncdc.noaa.gov/fpsf.html

Grays Harbor County Planning & Building Division

Public Services Department 100 W Broadway Suite 31 Montesano, WA 98563 360-249-5579 360-249-3203 (fax) pbd@co.grays-harbor.wa.us

www.co.grays-harbor.wa.us

Grays Harbor County Assessor's Office Online Parcel Database Assessment Information

Parcel 201222330050

Situs Address 03019 OCEAN BEACH RD P.BE

Legal Description TAX 1

Owner ALOHA SELF STORAGE INC **Address** PO BOX 401

PACIFIC BEACH, WA 98571

File Updated 7/27/2015 02:05

Location T 20 R 12 Sec 22

 Certified Values:
 Land
 Building
 Combined

 \$28,392.00
 \$641,745.00
 \$670,137.00

 Year Built
 2007
 Tax Code
 064F08H2

 Building Type
 COMMERCIAL
 School District
 064

 Style
 1-STORY
 Voting Precinct
 032

 Quality
 AVERAGE
 Total Acres
 5.07

 Fire Patrol Acres
 0

(pdf) Land Use 69 - Miscellaneous Services

Square Feet Type

 Lot
 0

 Building SF
 8734

 Percentage Complete
 100%

 Basement SF
 0

Finished Basement SF 0
Foundation C/C
Porch 1 SF 0

Porch 2 SF 0
Garage 1 SF 0
Garage 2 SF 0

Carport SF

0

0

 Date Of Sale
 Excise No
 Price
 Instr.
 Type

 12/30/2003
 E165034
 \$12,500.00
 WD
 IL

 6/17/2008
 E190924
 \$0.00
 QD